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Radioanatomical Assessment of the Sphenoid Ridge in      
Chiari Type I Malformation

ABSTRACT

AIM: To compare the sphenoid ridge (SR) morphology in patients with Chiari type I malformation (CIM) with healthy subjects.    
MATERIAL and METHODS: Three dimensional (3D) computed tomography scans of 49 (25 men / 24 women) CIM patients aged 
45.84±18.04 years, and 52 (26 men / 26 women) healthy subjects aged 43.46±11.62 years were included in the investigation. The 
angulation and dimension of SR were measured for both groups. 
RESULTS: Compared with the controls, CIM patients had greater lesser wing (LW) length (p<0.001) and LW width in the midline 
(p<0.001), but shorter LW width in the midpoint (p=0.001), LW width in the lateral point (p<0.001), and LW angle (p<0.001). In 
CIM, two configurations regarding LW angle types were observed: Type B in 75 LWs (76.5%) and Type C in 23 LWs (23.5%). In 
controls, two configurations regarding LW angle types were observed: Type A in 35 LWs (33.7%) and Type B in 69 LWs (66.3%). The 
distribution of the types according to study groups demonstrated that CIM affected significantly LW angle types (p<0.001). 
CONCLUSION: LW angle and length may represent middle fossa depth and anterior fossa width, respectively; thus, CIM subjects 
possess shallow middle fossa and wider anterior fossa.
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middle cerebral artery aneurysms may require a surgical pro-
cedure, including extensively removal of SR (14). Anatomical 
information about SR morphology (including its angulation, 
dimension and shape) may be beneficial for neurosurgeons 
in avoiding injury to adjacent structures (e.g., orbital branch 
of the middle meningeal artery, trochlear nerve, superior oph-
thalmic vein, and oculomotor nerve), when applying surgical 
procedures such as pterional orbitozygomatic approach or SR 
keyhole approach (6,8,12,14,24). Moreover, SR may serve as 
a reference point during these approaches, as this edge forms 

█   INTRODUCTION

The sphenoid ridge (SR), the bony frontier between the 
anterior fossa and middle fossae, is described as the 
curved posterior sharp margin of the sphenoid bone’s 

lesser wing (LW) (6,12,14,24). This edge is bounded medial-
ly by the anterior clinoid process, and laterally by the pteri-
on, which displays the Sylvian point’s approximate position 
(6,12). Pathologies directly related to SR are rare, but some 
surgeons report fibrous dysplasia and meningiomas arising 
from this edge (6). In addition, certain pathologies such as 
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a border between the frontal and temporal lobes of the brain 
(14). Therefore, neuroradiologists and neurosurgeons should 
wise well up to SR morphology to successfully carry out an 
operation.  

Current studies displayed that the whole skull base’s osseous 
components are substantially affected by Chiari type I 
malformation (CIM), likely resulting from a mesodermal failure 
(15,22). Nwotchouang et al. observed that such subjects 
had about 38% bigger sphenoid sinus volume by the side 
of healthy controls (15). In our opinion, this condition may 
result major alterations in anatomical properties of structures 
associated with the sphenoid bone (e.g., LW, sella turcica, and 
optic canal). For example, CIMs possess smaller sella volume 
and area, greater angle of the optic canal in axial plane, 
shorter and wide-angled anterior clinoid process, longer optic 
strut, longer anterior fossa, and more pneumatized posterior 
clinoid process by comparison healthy controls (2,4,15-18,22). 
Differences of skull base morphologies of CIM patients from 
normal subjects may affect the selection of surgical procedure, 
intraoperative orientation, and positioning of the patient’s 
head (2,15-18). However, our current knowledge (including 
morphometric evaluations, precise SR-related anatomical 
descriptions, and different surgical approach assessments) 
is mainly obtained from normal subjects (1,8,10,11,14,23,24). 
Thus, we think that novel studies focused on SR morphology 
in subjects with different malformations such as CIM are 
required for determining whether anatomical properties of SR 
are altered in CIM or not, by comparison healthy individuals. 
The main goal of our work is to evaluate the angulation and 
dimension of SR in CIM for improving the present literature 
data regarding morphometric properties of their cranial base. 

█   MATERIAL and METHODS
Ethics Statement 

The Clinical Research Ethics Committee approved ethically 
our retrospective examination (confirmation no: 2024/97, 
date: 20.02.2024).

Study Population

Study population was divided into two groups, CIMs and 

controls. Patient folders were evaluated to create these 
groups. Patient files included the following data: complaints, 
cure methods, radiologic views (CT: computed tomography, 
and MRI: magnetic resonance imaging), diagnosis procedures, 
demographic information (gender, age, etc.), and hospital 
admission/discharge dates.

Inclusion and Exclusion Criteria

Patients were diagnosed as CIM if they had tonsillar 
herniation over 5 mm downward from the foramen magnum, 
but no a history of meningomyelocele. In these patients, the 
circulation of the cerebrospinal fluid was impaired at the 
level of the foramen magnum. They had balance problems 
(gait disturbance), and also intense neck pain and vigorous 
headache, aggravated by Valsalva (sneezing, coughing, 
straining, etc.). Thus, CIM patients underwent operation, after 
radiological and clinical diagnosis.

In CIM, inclusion criteria were as follows: a) patients 
with high-quality preoperative MRI and CT slices, and b) 
patients diagnosed with CIM after radiological and clinical 
examinations between 2010-2023. Exclusion criteria were as 
follows: a) patients with other types of Chiari malformation, b) 
patients with any disorders regarding the cranial base (e.g., 
tumor), and c) CIM patients with a history of operation related 
the anterior and middle fossae.

In controls, inclusion criteria were as follows: a) subjects 
with high-quality MRI and CT slices, and b) normal subjects. 
Exclusion criteria were as follows: a) subjects with any 
malformation or genetic disorder, b) subjects with any disease 
such as tumors, and c) subjects with a history of medical or 
surgical treatment related to the skull base. 

CT Protocol

The raw data were obtained using a 64-row multidetector 
scanner (Aquillion 64, Toshiba Medical Systems, Tokyo, 
Japan). Coronal, sagittal and axial slices were acquired by 
processing this data. A software (RadiAnt DICOM, Medixant, 
Poznan, Poland) was used to obtain information about SR.

Measured Parameters

Measurements were performed using 3D CT images (Figure 1). 

Figure 1: Skull base and 
measured parameters. 
a: LWL; b: LWW-ML; c: LWW-
MP; d: LWW-L; and e: LWA; 
SR: sphenoid ridge; DS: dorsum 
sellae; TS: tuberculum sellae; 
ACP: anterior clinoid process; 
GW: greater wing; CA: crista 
alaris; LW: lesser wing; and 
CG: crista galli.
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Considering the previous studies (8, 24), five parameters were 
measured to obtain data about SR. The explanations of the 
parameters were as follows: a) LWL: the length of the lesser 
wing, b) LWW-ML: the width of the lesser wing in the midline, 
c) LWW-MP: the width of the lesser wing in the midpoint, d) 
LWW-L: the width of the lesser wing in the lateral tip, and e) 
LWA: the angle of the lesser wing. Considering the work of 
Kahilogullari et al. (8), LWA was classified as three types: Type 
A (LWA > 130°), Type B (130° > LWA > 110°), and Type C (LWA 
< 110°).

Statistical Analysis

Pearson correlation coefficient test was applied to see 
correlations between LWL, LWA, LWW-ML, LWW-MP and 
LWW-L. The student’s t-tests were utilized to make gender 

(the independent test), group (the independent test), and side 
(the paired test) comparisons. Chi-square test was utilized to 
assess relations of LWA types with the study groups. Shapiro-
Wilk test was used to assess normality control of the dataset. 
SPSS (IBM, Armonk, NY) was used to perform statistical 
evaluations. The “p<0.05” was considered significant.

█   RESULTS
CIM group consisted of 49 (25 men / 24 women) patients aged 
45.84±18.04 years. Control group consisted of 52 (26 men / 
26 women) healthy subjects aged 43.46±11.62 years. Our 
findings are as follows:

 Compared to the controls, CIM subjects had greater LWL 
(p<0.001) and LWW-ML (p<0.001), but shorter LWW-MP 
(p=0.001), LWW-L (p<0.001) and LWA (p<0.001) (Table I).

	In the CIM group, all parameters were similar for sexes 
and sides (p>0.05). In controls, all parameters except LWA 
were similar for sexes and sides (p>0.05). Men had greater 
LWA in comparison with women (p=0.008) (Table II).

	In comparison with control males, CIM males had greater 
LWL (p<0.001), but shorter LWW-MP (p=0.033), LWW-L 
(p<0.001) and LWA (p<0.001). By comparison control 
females, CIM females had greater LWL (p<0.001) and 
LWW-ML (p=0.001), but shorter LWW-MP (p=0.017), 
LWW-L (p<0.001) and LWA (p<0.001) (Table III).

Table I: Comparison of CIM and Controls

Parameters CIM Controls p-value

LWL (mm) 52.45 ± 5.25 41.23 ± 8.30 <0.001

LWW-ML (mm) 9.92 ± 1.85 8.75 ± 1.25 <0.001

LWW-MP (mm) 3.08 ± 1.28 3.52 ± 0.45 0.001

LWW-L (mm) 1.88 ± 0.51 2.76 ± 0.69 <0.001

LWA (°) 116.42 ± 5.16 126.19 ± 7.73 <0.001

Table II: Sex and Side Comparisons for CIM and Controls

Group Parameters Male Female p-value Right Left p-value

CIM

LWL (mm) 52.41 ± 5.37 52.50 ± 5.19 0.933 52.03 ± 6.39 52.87 ± 3.83 0.437

LWW-ML (mm) 9.52 ± 1.53 10.33 ± 2.08 0.124 - - -

LWW-MP (mm) 3.09 ± 1.19 3.07 ± 1.38 0.965 3.12 ± 1.36 3.04 ± 1.20 0.767

LWW-L (mm) 1.81 ± 0.50 1.96 ± 0.52 0.166 1.86 ± 0.42 1.91 ± 0.59 0.645

LWA (°) 117.32 ± 4.97 115.48 ± 5.24 0.077 116.49 ± 5.63 116.35 ± 4.70 0.892

Controls

LWL (mm) 41.48 ± 8.42 40.98 ± 8.24 0.764 41.49 ± 7.59 40.97 ± 9.01 0.748

LWW-ML (mm) 8.80 ± 1.31 8.70 ± 1.21 0.773 - - -

LWW-MP (mm) 3.47 ± 0.47 3.56 ± 0.44 0.291 3.62 ± 0.40 3.42 ± 0.48 0.114

LWW-L (mm) 2.77 ± 0.69 2.76 ± 0.70 0.946 2.46 ± 0.67 3.06 ± 0.58 0.052

LWA (°) 128.17 ± 8.30 124.21 ± 6.61 0.008 126.75 ± 7.95 125.63 ± 7.53 0.464

Table III: Sex Comparison for Both Groups

Parameters CIM Male Control Male p-value CIM Female Control Female p-value

LWL (mm) 52.41 ± 5.37 41.48 ± 8.42 <0.001 52.50 ± 5.19 40.98 ± 8.24 <0.001

LWW-ML (mm) 9.52 ± 1.53 8.80 ± 1.31 0.077 10.33 ± 2.08 8.70 ± 1.21 0.001

LWW-MP (mm) 3.09 ± 1.19 3.47 ± 0.47 0.033 3.07 ± 1.38 3.56 ± 0.44 0.017

LWW-L (mm) 1.81 ± 0.50 2.77 ± 0.69 <0.001 1.96 ± 0.52 2.76 ± 0.70 <0.001

LWA (°) 117.32 ± 4.97 128.17 ± 8.30 <0.001 115.48 ± 5.24 124.21 ± 6.61 <0.001
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█   DISCUSSION
CIM is described as tonsillar herniation over 5 mm downward 
from the foramen magnum on MRI (9). It has an incidence of 
0.24-3.6% (9). This malformation is considered mainly due 
to deviations in occipital somite development, arising from 
the paraxial mesoderm (3). In CIM, osseous components 
of the posterior fossa are primarily affected and this leads 
to about 25% reduction in fossa volume (3,21). The most 
obvious sign of volumetric shrinkage is the overcrowding of 
the hindbrain, which results in various symptoms (3,9,21). 
The current investigations show that the whole skull base’s 
osseous components are substantially affected by CIM, likely 
resulting from a mesodermal failure (15,22). For instance, in 
comparison with normal subjects, such patients possess 
longer anterior fossa (22). Similar to CIM, the whole skull base’s 
osseous components are substantially affected by Chiari 
type II malformation (CIIM) (19). For instance, in comparison 
with normal subjects, CIIMs had taller pituitary gland with no 
pathology, longer tuberculum sellae, shorter dorsum sellae, 
and shallow sella (19). Patel et al. stated that this condition may 
cause a misinterpretation like the enlargement of the pituitary 
gland, as the shallow sella may cause the normal gland to 
appear taller than normal on MRI (19). In these regards, we 
believe that novel examinations are required for determining 
whether CIM and CIIM affect morphological properties of 
anatomical structures like SR present in the anterior fossa 
and/or middle fossa.

	In the CIM group, positive or negative correlations were 
not found between the parameters. In controls, positive 
correlations were found between LWL and LWW-ML 
(p<0.001, r=0.700), between LWL and LWW-MP (p<0.001, 
r=0.688), between LWL and LWW-L (p<0.001, r=0.588), 
between LWW-ML and LWW-MP (p<0.001, r=0.481), and 
between LWW-MP and LWW-L (p=0.027, r=0.217) (Table 
IV).

	In the CIM group, two configurations regarding LWA types 
were observed: Type B in 75 LWs (76.5%) and Type C in 23 
LWs (23.5%). Type A was not observed in CIM. In controls, 
two configurations regarding LWA types were observed: 
Type A in 35 LWs (33.7%) and Type B in 69 LWs (66.3%). 
Type C was not found in controls. The distribution of LWA 
types according to study groups was presented in Table 
V, which displayed that this classification was affected by 
CIM (p<0.001). 

Table IV: Correlations Between the Parameters for CIM and Controls

Group Parameters LWW-ML LWW-MP LWW-L LWA

CIM

LWL -0.038 0.184 0.043 0.056

0.794 0.070 0.674 0.582

LWW-ML -0.165 -0.079 -0.168

0.258 0.590 0.248

LWW-MP 0.168 -0.103

0.098 0.314

LWW-L -0.139

 0.172

Control

LWL 0.700** 0.688** 0.588** 0.107

<0.001 <0.001 <0.001 0.281

LWW-ML 0.481** 0.159 0.037

<0.001 0.259 0.794

LWW-MP 0.217* 0.058

0.027 0.559

LWW-L 0.034

 0.733

*: p<0.05, **: p<0.01, Bold values  indicate statistically significant correlations.

Table V: Distribution of LWA Types according to Study Groups

Groups Type A Type B Type C Total p-value

CIM 0 75 (76.5%) 23 (23.5%) 98

<0.001Controls 35 (33.7%) 69 (66.3%) 0 104

Total 35 144 23 202
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40 adult dry skulls, and measured LWA as 118° on the right, 
and 119° on the left. They also conducted on CT images of 
40 patients, and measured LWA as 114.9° on the right, and 
116.5° on the left (8). Our mean value of LWA in controls 
was distinctly greater than their measurements. In CIM, two 
configurations regarding LWA types were observed: Type B 
in 75 LWs (76.5%) and Type C in 23 LWs (23.5%). In controls, 
two configurations regarding LWA types were observed: 
Type A in 35 LWs (33.7%) and Type B in 69 LWs (66.3%). 
The distribution of LWA types according to study groups 
displayed that LWA types was affected by this malformation. 
CIM patients had distinctly smaller LWA in comparison with 
controls. Kahilogullari et al. identified three types in dry 
skulls (Type A: 27%, Type B: 43%, and Type C: 28%) and in 
CT images (Type A: 26%, Type B: 42%, and Type C: 31%). 
Interestingly, we did not observe Type C in controls, and 
Type A in CIM. They determined that SR angle was positively 
correlated with the middle fossa depth (8). In this regard, we 
think that CIM patients have shallow middle fossa compared 
to controls. 

█   CONCLUSION
LWA and LWL may represent middle fossa depth and anterior 
fossa width, respectively; thus, subjects with CIM possess a 
shallow middle fossa and a wider anterior fossa.
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