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ABSTRACT

AIM: To investigate the possible mediation of epigenetic mechanisms underlying the regenerative effect of uridine in a sciatic nerve 
transection rat model.   
MATERIAL and METHODS: Fifty adult male rats were randomized to sham, control, and uridine groups. After unilateral transection 
and primary anastomosis of the right sciatic nerve, a single daily dose of saline (1 ml/kg; sham and control groups) or uridine (500 
mg/kg; uridine group) was injected intraperitoneally for a week. The sciatic nerves were removed en bloc on the eighth day and 
levels of histone deacetylase 1 (HDAC1), acetylated histone-H3, and acetylated histone-H4 were analyzed in nerve homogenates. 
The number of myelinated axons in the sciatic nerve specimens was analyzed histomorphologically.
RESULTS: The HDAC1 levels were significantly greater in the control group than in the sham (p<0.001) and uridine (p<0.01) groups. 
Compared to the sham group, the acetylated histone-H3 and histone-H4 levels decreased in the control group (by 81.49% and 
79.98%, respectively for both; p<0.001) and increased significantly in the uridine group (by 62.54% and 51.68% respectively; 
p<0.01, p<0.05). The number of myelinated axons decreased significantly (p<0.001) in the control group, which was enhanced 
significantly by uridine administration.
CONCLUSION: Epigenetic mechanisms may partly mediate the regenerative effect of uridine treatment in a rat model of sciatic 
nerve injury. Our data provides novel insights in the management of peripheral nerve damage and suggests potential benefit of 
uridine for degenerative diseases in which epigenetic impairments are involved. 
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not sufficient for complete regeneration and functional 
recovery owing to scar tissue formation (29,45), Schwann 
cell dysfunction, misdirection of axonal growth cones, or 
irreversible muscle atrophy after loss of innervation.

█   INTRODUCTION

Peripheral nerve regeneration is a challenge in regenerative 
medicine. Typically, the post-injury regeneration rate 
of a peripheral nerve is 1 mm/day, which is usually 
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In transection injuries, degenerative changes in the peripheral 
nerve occur on either side of the injury, resulting in partial 
or complete sensory/motor loss is observed (8,21,42,46). 
Following a peripheral nerve injury, the proximal segment 
undergoes degenerative changes and the distal segment 
undergoes Wallerian degeneration (29). Pathophysiological 
changes, such as apoptosis, oxidative stress, inflammation, 
destruction of the extracellular matrix, and several other events 
can worsen the extent of damage in a peripheral nerve injury 
(PNI) (28,47,48,52); however, these complex processes can be 
disrupted at every stage to prevent post-injury regeneration. 
Although several surgical and medical approaches targeting 
these processes have been developed, a treatment that can 
guarantee full functional recovery in PNI is yet to be discovered 
(8,29,42,46).

Uridine is the chief pyrimidine nucleoside in circulation (13,72), 
which is found in breast milk in humans and other mammals 
(68). It increases the biosynthesis of cytidine diphosphate-cho-
line (CDP-choline) as a rate-limiting compound both in vivo 
(12), and in vitro (60); it is also a precursor for synthesizing 
membrane phospholipids via the Kennedy pathway (36). Sys-
temic treatment with uridine reportedly augments the synap-
tic connections of neurons (58), while exogenous treatment 
with uridine has been reported to provide neuroprotection and 
reduce long-term cognitive deficits by preventing apoptotic 
neuronal loss in experimental hypoxic-ischemic encepha-
lopathy (HIE) (12,22,41), and hyperoxic brain injury models 
(23). In the HIE model, uridine treatment promoted neuronal 
recovery by decreasing histone deacetylase (HDAC) activity 
and increasing levels of acetylated histone-H3 and acetylat-
ed histone-H4 (41). A recent study demonstrated the role of 
epigenetic mechanisms in treating peripheral nerve damage 
and enhancing functional recovery (27). The authors noted 
that an HDAC3 enzyme-dependent pathway was responsible 
for preventing peripheral myelin development and functional 
regeneration; therefore, inhibiting this pathway can potentially 
boost peripheral myelination (27).

Therefore, in continuation to our previous observations 
regarding the effect of uridine in rat sciatic nerve transection 
and primary anastomosis model (38,39), this study aimed to 
explore the mediation of epigenetic mechanisms (involving 
the HDAC1 enzyme, acetylated histone-H3, and acetylated 
histone-H4 levels) underlying uridine’s effects in peripheral 
nerve regeneration.

█   MATERIAL and METHODS
Study Design and Experimental Animals 

This experimental study was approved by the Local Ethics 
Committee on Animal Experiments, Bursa Uludag University, 
Bursa, Turkey (approval no: 2021-08/02; 15.06.2021), and 
carried out in accordance with the ARRIVE Guidelines Version 
2.0 (56) and Guide for the Care and Use of Laboratory Animals 
– 8th edition (49). 

Fifty male Sprague Dawley rats (3–6 months old and weighing 
300–400 g) were purchased from the Bursa Uludag University 
Medical Faculty Experimental Animal Research Center, Bursa, 

Turkey. All rats were housed in single cages maintained at 
22°C with a 12-hour light/dark cycle and free access to food 
and water. 

Rats were randomized to Sham, Control and Uridine groups 
to further receive intraperitoneal injections of saline, saline 
and uridine, respectively. Before the treatments, rats in the 
Control and Uridine groups underwent unilateral sciatic 
nerve transection surgery and those in the Sham group only 
received sham surgery as a control for the effects of surgery. 
Two rats died following sciatic nerve transection surgery; 
hence, the study finally included 48 rats (n=16 in each group). 
Following surgery, treatments were initiated and lasted for 7 
days. On the 8th day, rats were sacrificed and nerve samples 
were collected. Half in number (a total of 24 obtained from 
all three groups) of the nerve samples was used for enzyme 
and protein analyses while the other half (n=24) was used for 
histomorphological analyses. 

Surgical Procedure

Rats underwent sciatic nerve transection surgery which was 
followed by immediate primary anastomosis. The rats were 
anesthetized using 2%-3% sevoflurane (Sevorane Liquid; 
Aesica Queensborough LLC., Queensborough Kent, UK), 
followed by the use of 1%-2% sevoflurane for anesthesia 
maintenance. The rats were placed on a dissection table in a 
left lateral decubitus position. To approach the sciatic nerve, 
the femoral head was palpated along the hind leg, and a 2-3 
cm long posterolateral skin incision was made from the knee to 
the upper part of the trochanter major. Next, the plane between 
the biceps femoris and the gluteus muscle was dissected with 
the help of microdissection scissors and separated from the 
underlying fascia. Proceeding with blunt dissection, a retractor 
was placed between both muscle blocks, and 1-2 cm of the 
sciatic nerve was exposed extending from the sciatic foramen 
up to the origin of its tibial and peroneal branches (Figure 1). 
A full-thickness nerve cut was made in the sciatic nerve 1 
cm away from the distal sciatic foramen in all the rats except 
those in the sham group. In the sham group, no transection 
was performed to explore normal nerve functions and activity. 
The distal and proximal nerve stumps were primarily sutured 
under a microscope with an aperture of 180° (Figure 2). The 
fascia and skin were closed, and the rats were returned to 
their cages. All operative procedures were performed by a 
single neurosurgeon using a surgical microscope (Zeiss Opmi; 
Carl Zeiss Meditec Inc., Jena, Germany).

Interventions

Before surgical procedures, the rats were randomized into 
the uridine, control, and sham groups (n=16 in each group). 
The treatments were initiated on the day of surgery; rats in 
the sham and control groups were administered daily with 
1 ml/kg of saline intraperitoneally for seven days, while the 
uridine group received 500 mg/kg of uridine (Merck KGaA, 
Darmstadt, Germany) intraperitoneally daily for seven days. 
The uridine dose administered was determined as reported in 
previous studies (38,39).

On the 8th postoperative day, the rats were anesthetized again 
with sevoflurane (3%), and their sciatic nerves were excised 
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unilaterally. Sciatic nerve samples from half of the rats in each 
group were homogenized to perform enzyme and protein 
analyses; the other half were used for histomorphological 
analyses. All rats were euthanized with a high dose of 
sevoflurane after tissue collection.

Macroscopic Evaluation

The operative site and surgical wound were assessed daily until 
the end of the experiment. The condition of the skin, muscle, 
and fascia, and the relationship of the sciatic nerve with its 
surrounding tissue were noted. The Petersen numerical rating 
score (57)  was used to quantify the nerve’s adherence to the 
surrounding soft tissue mass and its dissociation from these 
structures during macroscopic evaluation. The score uses two 
parameters: (i) skin and muscle fascia and (ii) nerve adherence 
and nerve separability. Considering skin and muscle fascia, 
rats were graded as Grade 1: skin or muscle fascia entirely 
closed, Grade 2: skin or muscle fascia partially open, or Grade 
3: skin or muscle fascia completely open; based on the extent 
of nerve adherence and nerve separability, rats were graded 
as Grade 1: no dissection or mild blunt dissection required, 

Grade 2: some vigorous blunt dissection required, and Grade 
3: sharp dissection required.   

Tissue Sampling

On the 8th postoperative day, the surgical wound was re-
opened, and the soft tissue was dissected. The sciatic nerves 
were removed en bloc for enzyme and protein analyses and 
stored at −80°C. For the enzyme-linked immunosorbent 
assay (ELISA) and Western blot analyses, the nerve samples 
were homogenized in 2 ml of ice-cold phosphate-buffered 
saline (PBS; pH 7.4). For the histomorphological studies, 
a sufficient amount of Trump’s fixative (1.4 g formaldehyde, 
1% glutaraldehyde in 1 × PBS, and 1.16 g NaH2PO4·H2O per 
100 ml; Sigma-Aldrich, St. Louis, MO, USA) was added to the 
operative site, incubated for 10 minutes, and subsequently 
cleared from the surgical field; this step was repeated two 
more times. Nerve tissues were excised under microscopic 
guidance and stored at 4 °C in 15 ml tubes containing Trump’s 
fixative.

Figure 1: Rat placed in the left 
lateral decubitus position (A); 
the right sciatic nerve (B) was 
exposed with blunt dissection. 
The sciatic nerve and distal 
fascicular branch point (C) 
were exposed. SN: Sciatic 
nerve, PF: peroneal fascicle, 
TF: tibial fascicle.

Figure 2: The unifascicular sciatic nerve segment was exposed (A). Subsequently, a full-thickness nerve transection was made with a 
dermatome knife (B). A primary anastomosis was achieved between the distal and proximal stump using two sutures made 180° apart 
using the epineural nerve suturing technique (C).
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Histomorphological Analyses

Tissue samples in the tubes containing Trump’s fixative 
were fixed for one week by renewing the fixatives every 48 
hours. Thereafter, the tissues were subjected to post-fixation 
procedures (2 h in 1% osmium tetroxide [OsO4] with a 
phosphate buffer of 0.1 mol/L) before the histomorphological 
analysis. Spur’s resin (Agar Low Viscosity Resin Kit; Agar 
Scientific, Essex, UK) was carefully added to the nerve 
samples (Figure 3A). The mold containing the nerve segments 
and resin were left overnight to polymerize at 68℃–70°C. 
The resin-embedded nerve blocks were placed in an 
ultramicrotome device (LKB Ultrotome Main Unit Type 4801 A, 
Vienna, Austria) set to 1–2 μm, to obtain transverse semi-thin 
sections. Subsequently, a drop of toluidine blue solution was 
added to the sections and left for 20–30 seconds; the slides 
were gently immersed in a jar of distilled water to rinse off 
the excess solution. This process was repeated several times 
until the sections were clear. The preparations were dried at 
60°C for approximately 15 minutes and covered with a lamella 
(Objektträger, Isolab, Eschau, Germany). The slides were then 
analyzed microscopically and stored at room temperature (19).

Using the Zeiss Primo Star light microscope system and Zeiss 
Labscope software (Carl Zeiss Meditec AG, Jena, Germany), 
we obtained randomly selected images of the sections (5 
MP resolution). The section images magnified to 100x were 
converted to BMP format using ImageJ 1.53t (Laboratory 
for Optical and Computational Instrumentation, University of 
Wisconsin, Madison, WI, USA) which was calibrated using 
the table micrometer before each examination and count. 
An Olympus micrometric slide was used for calibration. For 
all preparations, a count frame (1500 × 1000 pixels; 127.19 
× 84.74 µm; 10772 µ2) was created using macros on the 
images that were obtained with a 100x objective. Additionally, 
myelinated axons in the field were counted using non-biased 
counting rules, and the number of axons per square millimeter 
(axonal density) was determined. For this purpose, axons in 
contact with the right and lower edges of the frame and all 

Enzyme and Protein Analyses

The HDAC1 enzyme levels were determined using a rat-com-
patible ELISA kit (Bioassay Technology Laboratory, Shang-
hai, China) as per the manufacturer’s instructions. Briefly, the 
procedure includes incubation of the HDAC colorimetric sub-
strate with a compound containing HDAC activity, followed 
by treatment with lysine developer to produce a chromophore 
which was analyzed using spectrophotometry (BioTek Quant; 
BioTek Instruments Inc., Winooski, VT, USA) at a wavelength 
of 450 nm.

Levels of acetylated histone-H3 and acetylated histone-H4 
were analyzed using Western blot analysis. The total protein 
levels were measured using the Bicinchoninic acid method; 
the homogenates were mixed with equal volumes of Laemmli 
buffer (0.0625 M Tris Base, 0.07 M Sodium Dodecyl Sulfate, 
10% glycerol and 5% 2-mercaptoethanol) and boiled for 
five minutes. Equal amounts of the protein were loaded for 
all samples, which were separated using sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Mini 
Protean II; Bio-Rad, Hercules, CA, USA). The proteins were 
transferred onto polyvinylidene fluoride (PVDF) membranes 
(Millipore, Billerica, MA, USA), which were blocked for 
half an hour with tris buffer saline-tween 20 (TBST, Sigma-
Aldrich, St. Louis, MO, USA), and 5% non-fat powdered 
milk solution (Carnation, Glendale, CA, USA). Subsequently, 
the membranes were washed three times with TBST and 
incubated overnight with anti-acetyl-histone H3 (1:1000; Cell 
Signaling Technology, Danvers, MA, USA) and anti-acetyl-
histone H4 (1:1000; Cell Signaling Technology, Danvers, MA, 
USA) as primary antibodies, and anti-B-Actin (B-Actin, 1:1000; 
Cell Signaling Technology, Danvers, MA, USA) as the positive 
control. The following day, the membranes were washed with 
TBST again and incubated for 60 minutes with the appropriate 
secondary antibodies (1:5000; Cell Signaling Technology, 
Danvers, MA, USA). The intensity of the protein bands was 
digitized and analyzed using a CDigit scanner (Licor CDigit 
scanner, Lincoln, NE, USA).

Figure 3: The post-fixation process of the excised sciatic nerve segments for histomorphological analyses was completed and the 
sections were placed in resin blocks (A). A counting frame was created using ImageJ software before counting the axons (B).

A B
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skin and muscle fascia around the wound, two rats had Grade 
3 (completely open) wounds, three had Grade 2 (partially 
healed) wounds, and the remaining rats had Grade 1 (fully 
recovered) wounds; there was no statistically significant 
difference between the groups in terms of Petersen grading 
(Figure 4). In contrast, the groups were significantly different 
in terms of nerve adhesion and separability; nerve adhesion 
and fibrotic scar formation were significantly higher in the 
control group than in the sham group (p<0.001), while these 
pathologies were significantly improved in the uridine group 
(p<0.01) (Figure 4). Macroscopic examination of the excised 
nerve segments revealed that there were more neuromas and 
misdirection in the control group than in the sham and uridine 
groups. In contrast, the nerve segments were more intact and 
had a uniform appearance in the uridine group than in the 
control group (Figure 5).

Enzyme and Protein Analysis

In comparison to the sham group, the HDAC1 levels were 
significantly higher in the control group (p<0.001) and 
significantly lower in the uridine group (p<0.01) (Figure 6). 
Likewise, as compared to the sham group, the control group 
showed a significant decrease in the levels of acetylated 
Histone-H3 and acetylated Histone-H4 by 81.49% (p<0.001) 
and 79.98% (p<0.001), respectively, and the uridine group 
showed increased levels of acetylated Histone-H3 and 
acetylated Histone-H4 to 62.54% (p<0.01) and 51.68% 
(p<0.05), respectively (Figure 7).

Histomorphological Analyses

The mean ± standard error of measurements (SEM) number 
of axons counted within the counting frame was 32.52 ± 
0.85, 116.37 ± 3.85, and 66.75 ± 1.73 for the control, sham, 
and uridine groups, respectively (Figure 8). The mean axonal 
density was noted as 3019.09 ± 79.01 in the control group, 
10803.04 ± 358.24 in the sham group, and 6196.6 ± 161.48 
in the uridine groups (Figure 9). Compared to the sham group, 
both the number of myelinated axons in the measurement 

myelinated axons were included in the count, and those axons 
in contact with the left and upper edges of the counting area 
were excluded (Figure 3B).

Statistical Analysis

All analyses were performed using SigmaPlot (SYSTAT 
software, version 12.5, Bayshore Rd, Palo Alto, CA, USA). The 
variables were described as mean ± standard error of means 
(SEM). A one-way analysis of variance, followed by Tukey’s 
post-hoc testing was used to compare multiple groups for 
enzyme and protein analyses. The histomorphological analysis 
results were evaluated using the Kruskal–Wallis test. A value 
of p<0.05 was considered statistically significant.

█   RESULTS
Operative and Macroscopic Evaluations

According to the Petersen numerical rating score (57) for the 

Figure 4: Quantitative results of Petersen’s grading showing 
nerve adhesion and separability (n = 16 in each group). **p 0.01; 
***p<0.001, compared to the control group.

Figure 5: Excised nerve samples of the uridine and control groups. A–E are samples from the control group; F–J show the sciatic nerve 
segment samples of the uridine group.
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PNI are common causes of severe morbidity with a reported 
prevalence of 2.8% (50) and an incidence of 13–23/100,000 
(5) in developing countries. Surgery remains the gold standard 
for the treatment of PNI (26); however, despite the introduction 
of new suturing techniques (44) and other approaches, such 
as autogenous nerve grafting, vascularized nerve grafting, 
synthetic tube grafting, and end-to-side anastomosis, full 
functional recovery is not yet possible and the outcomes are 
far from being curative. This is because surgery alone cannot 
assuage the pathophysiological consequences of nerve 
damage, such as inflammation, oxidation, and apoptosis, which 

area and axonal densities were significantly lower (p<0.001) in 
the control group and significantly more in the uridine group 
(p<0.001) (Figure 10).

█   DISCUSSION
These results confirm our previous findings regarding the 
neuroprotective effects of uridine in a rat model of sciatic 
nerve injury (38,39) and highlight the role of HDAC inhibition 
as a potential mechanism underlying the action of uridine.

Figure 6: HDAC1 levels in the uridine, control, and sham groups.
**p<0.01; ***p<0.001, compared to the control group (n=8). The 
data are expressed as mean ± standard error of measurement for 
each group.

Figure 7: Acetylated histone-H3(**p<0.01; ***p<0.001) and histone-H4 (*p<0.05; ***p<0.001) protein levels in the uridine, control, and 
sham groups. p-values compared to the control group (n=8 in each group); data are expressed as mean ± standard error of measurement.

Figure 8: Number of axons in the measurement area. ***p<0.001 
compared to the control group (n=8 in each group); mean ± 
standard error of measurement values are provided for each 
group.
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els (3,9,25,32,54). CDP-choline is an endogenous compound 
formed in the rate-limiting step of phosphatidylcholine syn-
thesis via the Kennedy pathway (36) which has cardiovascular 
(14,65), neuroendocrine (10,11,31), and metabolic (30) effects 
on exogenous administration. However, exogenously admin-
istered CDP-choline metabolizes to choline and cytidine while 
cytidine is rapidly converted to uridine in blood circulation 
(72). Treatment with uridine exhibits several beneficial effects 
on nerve tissue, such as increased nerve branching and ax-
onal growth in cultured PC12 cells (58) and protection in HIE 
(12,22,41) and hyperoxia (24) models. Therefore, our recent 
studies used experimental models of sciatic nerve injury to 
test the effects of uridine in major pathophysiological con-
sequences of PNI. We observed that uridine administration 
improved nerve regeneration and functional recovery (39) by 
exerting anti-apoptotic and anti-oxidant effects (38).

Abnormal or dysfunctional histone acetylation underlies the 
pathophysiology of various neurological illnesses, including 
neurodegeneration (18,62). These acetylation mechanisms 
are dynamic events and are regulated by histone acetylase 
(HAT)-HDAC enzyme groups. HATs cause acetylation of lysine 
residues and relax the intact nucleosome structure between 
the DNA and histones, allowing transcription factors to 
reach the target gene and cause its expression. Conversely, 
HDACs cause deacetylation of the lysine residues; therefore, 
transcription cannot occur when DNA is firmly bound to 
the histones (35). Enzymes and proteins involved in histone 
metabolism are commonly found in the peripheral and 
central nervous systems. Thus, epigenetic mechanisms 
involving HDAC inhibition exert neuroprotective action in the 
pathophysiology of PNI (17,61,64,67).

It is known that inhibition of histone deacetylation is 
associated with reduced apoptosis (70), and uridine behaves 
as an anti-apoptotic HDAC inhibitor in a rat model of neonatal 
HIE (41). Therefore, the present study further explored the 
potential mechanism of action through which uridine exerts its 
neuroprotective effects in PNI. As reported previously (38,39), 
intraperitoneal administration of uridine (500 mg/kg) for seven 
consecutive days reduced nerve adhesion and fibrotic scar 
formation in our rat models of PNI. Moreover, the number of 
myelinated axons in the measurement area and axonal density 
(per mm2) also enhanced significantly with uridine treatment. 

negatively affect the regeneration process. Therefore, previous 
studies have targeted one or more of the pathophysiological 
parameters associated with PNI. So far, a variety of chemical 
agents, compounds, and other approaches have been tested 
for the treatment of PNI, which includes chemical agents; 
coenzyme Q10 and vitamin E (53), ginger and sesame oil (16), 
telmisartan (76), quercetin (69), hyperbaric oxygen therapy 
(37), ginkgo (1), pioglitazone (59), levetiracetam (2), lithium (7), 
surgical approaches; mesenchymal stem cells (34,63,74), the 
use of synthetic grafts to prevent misdirection of the growth 
cone (75), local treatment modalities like anti-transforming 
growth factor beta, hyaluronic acid, human amniotic fluid (55), 
aprotinin (24), 5-fluorouracil (51), low-dose radiation (20) and 
electrophysical modalities; electrical stimulation and pulse 
magnetic field (4,15,33).

Likewise, our previous study showed that treatment with 
CDP-choline (citicoline), a compound with anti-inflammato-
ry, anti-oxidant, and anti-apoptotic properties (66), improved 
functional recovery, promoted nerve regeneration, and re-
duced postoperative scar formation in experimental rat mod-

Figure 9: Axon count per square millimeter (axonal density) of the 
section. ***p<0.001 compared to the control group (n=8); mean 
± standard error of measurement values are provided for each 
group.

Figure 10: Thin sections of fixed sciatic nerve samples stained with 1% borax-toluidine blue. A) sham; B) control; and C) uridine group.
Bar, 20 micrometers.
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