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ABSTRACT

AIM: To investigate changes in nitric oxide (NO) levels, oxidative stress, and dynamic thiol/disulphide homeostasis in the serum and 
cerebrospinal fluid (CSF) of patients with aneurysmal subarachnoid hemorrhages (aSAH).    
MATERIAL and METHODS: This prospective study included a total of 40 consecutive patients suffering from aSAH, who were 
operated on within the first 48 hours from onset of symptoms; CSF and blood samples were collected from these patients during 
their operations. To create a control group, blood samples and cerebrospinal fluid were taken from patients (n=40) without neurologic 
disorders who had undergone lumbar puncture for spinal anesthesia. 
RESULTS: We observed that the serum total antioxidant status had decreased markedly (p=0.0143) but that no change was 
evident in the oxidative stress index and total oxidant status in aSAH patients when compared to the controls. While total thiol 
(p=0.0014) and native thiol (p<0.0001) levels had decreased in the aSAH patients, disulphide levels (p<0.0001) had increased 
significantly. Although the native thiol/total thiol ratio declined (p<0.0001), the dynamic disulphide/total thiol ratio (p<0.0001) and 
dynamic disulphide/native thiol ratio (p<0.0001) increased markedly in serum samples from the patient group. Patient serum NO 
levels were also significantly elevated (p<0.0001). There were no marked changes in CSF for all measured parameters (p>0.05). 
CONCLUSION: This study demonstrated that serum NO levels and oxidative stress parameters increased markedly in the patients. 
These results may help to understand the underlying mechanisms behind early tissue damage due to aSAH and to monitor disease 
progression and improve the early detection of disease severity.
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space (2,32). Survivors of SAH frequently have prolonged and 
disabling emotional and cognitive impairments, neurological 
deficits, and a reduced quality of life (19,32). Aneurysmal SAH 
(aSAH) has an estimated worldwide incidence rate between 5 
and 10 per 100,000 person-years, with high regional variability 
(12).

█   INTRODUCTION

Subarachnoid hemorrhage (SAH) is a severe cerebrovas-
cular disease associated with high morbidity and mor-
tality (19). A ruptured aneurysm or traumatic head inju-

ry causes the extravasation of blood into the subarachnoid 
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Accumulating evidence has suggested that oxidative stress is 
considered to be an important mechanism in the development 
of the pathophysiological process associated with aSAH 
(50,52); SAH refers to when a hemorrhage in the subarachnoid 
space increases intracranial pressure, thus inducing early 
brain injury and causing hypoxia and neural damage (18,29). 
In the acute phase of aSAH, oxyhemoglobin, released from 
blood components, causes the overexpression of peroxidase 
and mitochondrial dysfunction. This leads to excessive 
reactive oxygen species (ROS) formation that surpasses the 
body’s antioxidant capacity, thereby generating early brain 
injury, including neuroinflammation and the disruption of 
the blood–brain barrier, inducing neuronal apoptosis, and 
causing long-term neurological dysfunction (50). Early brain 
injury is believed to occur in the first 72 hours following ictus 
and is associated with the increased risk of delayed cerebral 
ischemia (2). Neuroinflammation appears to play a central 
role in the initiation of SAH, directly leading to endothelial and 
smooth muscle dysfunction as well as vessel wall damage, 
and is regulated by cytokines, chemokines, and ROS (43,50).
Hemoglobin and oxyhemoglobin bind vasodilative substances, 
induce the formation of mediators causing vasoconstriction, 
and stimulate the generation of inflammatory agents such 
as cytokines and free radicals, thereby causing damage to 
the vascular endothelium and structural changes in smooth 
muscle cells (2,30). 

Thiol/disulphide homeostasis is another commonly used 
modality to investigate the oxidant/antioxidant balance. ROS 
is able to convert thiols into disulphides via oxidation. The 
thiol/disulphide balance is stable in healthy individuals, but 
this dynamic balance is disrupted in favor of disulphide in the 
presence of SAH (1). Nitric oxide (NO) has been reported to 
be associated with the pathogenesis of cerebral injuries (6). 
The destruction of the NO pathway has been hypothesized to 
be a crucial mechanism underlying cerebral vasospasm and 
early brain injury (31). Thus, the oxidant/antioxidant balance 
and NO levels may contribute to the pathology of aSAH. 
Since oxidative stress plays an important role in pathological 
changes following aSAH, the purpose of this study was to 
determine whether there are differences in the serum and 
cerebrospinal fluid (CSF) concentrations of thiol/disulphide, 
total oxidant status (TOS), total antioxidant status (TAS), and 
NO levels between aSAH patients and controls.

█   MATERIAL and METHODS 

Study Populations

This research involved a single-center prospective study of 
40 consecutive patients with diagnoses of spontaneous single 
aSAH who had been admitted from January 2022 to August 
2022 to the Department of Neurosurgery at Gaziantep Univer-
sity. This study received ethical approval from the Institution-
al Clinical Ethics Committee (Decision No and Date: 2022/16 
and 26.01.2022); it was performed according to the Declara-
tion of Helsinki, and written informed consent was obtained 
from the patients with full consciousness or from the first-de-
gree relatives of patients without full consciousness prior to 
their participation. Two patients discontinued surgery due to 

severe bleeding, leaving 38 patients (19 men and 19 women) 
with an average age of 50.7 ± 10.9 years in the aSAH patient 
group. The clinical features of all patients with aSAH, including 
their detailed medical history, laboratory findings, and demo-
graphics, were obtained. At the time of admission, the Hunt 
and Hess grading scale was applied for a clinical evaluation of 
the severity of aSAH (21). Patients were also graded accord-
ing to the Glasgow Coma Scale (GCS) upon their admission 
(47). aSAH was confirmed via cerebral computerized tomog-
raphy (CT) and digital subtraction angiography (DSA). aSAH 
was classified based on the pattern and distribution of hemor-
rhages according to the Fisher scale (13).

The inclusion criteria were as follows: >18 years of age; ad-
mission within 24 h of aSAH onset; confirmation of a ruptured 
aneuryms through DSA and CT angiography in SAH patients; 
no foreseeable early mortality due to brain stem injury; and the 
absence of contraindications to lumbar puncture.

The study excluded patients with chronic inflammation, severe 
infections, heart failure, autoimmune diseases, viral hepatitis, 
severe renal and hepatic failure, or malignant tumors; it also 
excluded those with a history of stroke, diabetes, or other 
systemic diseases; SAH with no clear source of hemorrhage 
according to cerebral CT angiography; or SAH accompanied 
with trauma complications.

All patients received standard medical care during their 
hospitalization. All patients underwent the coiling or clipping 
of the ruptured aneurysm within 48 h after SAH. The selection 
of an appropriate treatment modality (coiling or clipping) for 
each patient was governed by the neurosurgeon based on 
the size and location of the aneurysm; the selection was in 
accordance with the latest guidelines (5,19). After surgery, 
the patient’s airway was kept open and unobstructed; their 
blood pressure was controlled; and their cerebral edema was 
treated or prevented. Standard medical treatment in line with 
the aSAH guidelines was provided to all patients, including 
neuroprotection, anti-vasospasm, acid–base balance, stress 
ulcer prevention, and nutritional support. Neurological 
changes in patients were carefully monitored during the 
hospitalization period. The appearance of a focal neurologic 
deficit, the insidious onset of confusion, or both, were 
regarded as symptomatic of vasospasm. Cerebral CT scans 
were performed to rule out hemorrhages, acute ischemic 
events, or the occurrence of acute hydrocephalus.

A total of 40 patients served as controls, including 31 with lumbar 
disc diseases and nine with normal pressure hydrocephalus. 
The inclusion criteria for controls were as follows: >18 years 
of age; no inflammatory disease or systemic disease; no prior 
history of strokes; no drug/substance dependence or history 
of alcohol abuse; and the presence of a tumor. 

Blood and CSF Samples

Blood samples and CSF were collected at the time of surgery. 
Blood specimens were collected in plain tubes and incubated 
to clot for 20 minutes at 4oC. All the blood and CSF samples 
were centrifuged (1500 g, 10 mins, at 4oC) immediately after 
collection and were then separated into suitable aliquots and 
frozen at -80oC for further assays. All biochemical measure-
ments were performed by specialist blind to study groups.
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Thiol/disulphide Measurements

Thiol/disulphide levels were analyzed according to the 
previously published methods (36). Commercial kits (Rel Assay 
Diagnostics, Mega Tip Ltd, Gaziantep, Turkey) were used to 
measure the total thiol (–SH + –S–S–) and serum native thiol 
(–SH) levels. In this method, the disulphide bond was reduced 
to free functional thiol groups using sodium borohydride 
(NaBH4). Unused NaBH4 was reacted and discarded with 
formaldehyde. Total thiol and native thiol levels were measured 
after reactions with dithionite-2 nitrobenzoic (DTNB), and their 
levels were determined spectrophotometrically. Half of the 
difference between the total thiols and native thiols formed 
the dynamic disulphide (–S–S–) value.

Total Antioxidant Status (TAS) 

The serum TAS level was analyzed using commercially 
available kits (Rel Assay Diagnostics, Gaziantep, Turkey). This 
method uses 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid) (ABTS) radical cations. Antioxidants in the samples are 
capable of bleaching the characteristic color of a stable ABTS 
cation. The data are presented as the mmol Trolox equivalent 
per liter (11). 

Total Oxidant Status (TOS) 

The serum TOS level was analyzed using commercially 
available kits (Rel Assay Diagnostics, Gaziantep, Turkey). 
The oxidants present in the serum samples oxidize the 
Fe2+-o-dianisidine complex to the Fe3+ ion. The Fe3+ ion 
generates a colored compound in reaction to xylenol orange 
in an acidic condition. The color intensity of xylenol orange 
is directly proportional to the oxidant levels and is measured 
spectrophotometrically. Absorbance demonstrates the total 
amount of oxidant molecules present in the specimen. For 
the calibration, hydrogen peroxide (H2O2) was utilized, and the 
data are indicated based on the µmol H2O2 equivalent per liter 
(10).

Oxidative Stress Index (OSI) 

The ratio of TOS to TAS is accepted as the OSI, as described 
previously (16). The OSI value was determined according to 
the following formula: OSI (arbitrary unit) = TOS (μmol H2O2 
equivalent/L) / TAS (μmol Trolox equivalent/L).

NO Analysis

Concentrations of NO in samples were measured using 
chemiluminescence-based assay, as reported previously (25). 
Following deproteinization with absolute ethanol treatment (at 
0oC in a 1:2 v/v mix), the samples were incubated for 30 min at 
0oC and then centrifuged at 20800 g for 5 min. The NO analyzer 
(Model 280i NOA, Sievers Instruments, Boulder, CO, USA) 
was used to measure the NO levels from the supernatants. 
Vanadium trichloride (dissolved in 1 M HCl at 95oC) was 
utilized to reduce all NOx species (NO2

− + NO3
− + SNO−) to 

NO, and the NO formed was measured in the presence of pure 
nitrogen gas. Sodium nitrite standards were used to quantify 
the NO levels. The NO analysis software was utilized for data 
collection and analysis.

Statistical Analysis

The data are presented as the mean ± the standard deviations 
(S.D.) and were analyzed using GraphPad Instat (version 3.05, 
GraphPad Software Inc., San Diego, CA, USA). The qualitative 
data are expressed as ratios with percentages. The normality of 
the distribution was analyzed using the Kolmogorov–Smirnov 
test. A Student’s t-test and a Mann–Whitney U test were used 
for group comparisons of normally and abnormally distributed 
variables, respectively. A chi-squared test was utilized for the 
comparison of categorical data. Spearman’s or Pearson’s 
tests were used to evaluate the correlation analyses. A P-value 
of more than 0.05 is considered statistically significant. 

█   RESULTS
Clinical and laboratory parameters of the study groups are 
summarized in Table I. There were no meaningful differences in 
age, gender, hemoglobin, body mass index, white blood cells, 
platelet count, sedimentation, creatinine levels, or smoking 
status between the patients and control groups (p>0.05 for 
all). However, there was a marked elevation in C-reactive 
protein levels (p<0.0001). Thirty-four patients with intracranial 
aSAH underwent microsurgical clipping, and four patients 
underwent coiling. Acute hydrocephalus was present in two 
patients. Glasgow Coma Scale (GCS) scores upon admission 
ranged from 8 to 15. Serum TAS values were markedly 
attenuated in the patient group (p<0.05, Figure 1). However, 
no changes were recorded for TOS and OSI. Although serum 
total thiol and native thiol levels were depressed, disulphide 
levels were markedly augmented in the patient group (Figure 
2). There were significant reductions in the native thiol/total 
thiol ratio and disulphide/total thiol ratio, but we noted marked 
augmentation in the disulphide/native thiol ratio (Figure 3). 
Serum NO levels were also augmented in the patient group 
(p<0.0001, Figure 4). However, no marked changes in CSF 
levels were observed for all measured parameters. 

Correlation analyses revealed that there were negative 
correlations between GCS and the Fisher scale or Hunt and 
Hess grading, as shown in Table II. However, there were 
positive correlations between Hunt and Hess grading and the 
Fisher scale or TOS. A marked positive correlation was noted 
between NO levels and native or total thiol. Additionally, total 
thiol exhibited positive correlations with disulphide and native 
thiol levels (Table II).

█   DISCUSSION
In this prospective study, we assessed the CSF and serum 
thiol/disulphide, TAS, TOS, and NO levels of aSAH patients 
and compared them with those of the controls. We document-
ed that serum NO and disulphide levels were markedly aug-
mented in the aSAH group when compared to the controls. 
We noted significant reductions in serum TAS, total thiol, and 
native thiol levels in the aSAH group. Although this is the first 
study to examine the CSF levels of thiol/disulphide in aSAH 
patients, no marked changes were observed. Taken together, 
these findings demonstrate that serum (but not CSF) levels of 
oxidative stress parameters could be a better indicator of the 
pathophysiological process observed in aSAH.
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stress-induced damage to the DNA, proteins, and lipids can 
result in cytotoxic edema and the subsequent increase of 
intracerebral pressure as well (14,17). High malondialdehyde 
levels in the CSF of patients with aSAH have been detected (4). 
We demonstrated that serum TAS levels were markedly reduced 
in aSAH patients. Marzatico et al. also demonstrated in rats 
that the antioxidant capacity of antioxidant enzyme systems 
is depressed after experimental SAH (34). This could be the 
reason for the observation of negative effects on antioxidant 
stress following SAH. The suppression of superoxide 

Increased levels of superoxide radicals in the CSF after aSAH 
have been reported to have a connection with cerebrovascular 
spasm, which may further cause cerebral ischemia and 
elevated intracerebral pressure (14). Following SAH, blood-
derived hemoglobin and oxyhemoglobin in the subarachnoid 
space bind NO and therefore inhibit its vasodilating effect. 
Oxyhemoglobin-induced vasoconstriction is involved in the 
depression of voltage-dependent K+ channels, NO depletion, 
and the upregulation of R-type Ca2+ channel expressions in 
the cerebral vascular system (23,30,40). Moreover, oxidative 

Table I: Demographic, Laboratory and Clinical Features of Patients with aSAH and in Controls

Control (n=40) Patients with aSAH (n=38) p-value

Age (years) 48.7 ± 18.7 50.7 ± 10.9 0.5682

Gender 0.8296

Male (n %) 22 ( 55.0) 19 (50.0)

Female (n %) 18 (45.0 ) 19 (50.0)

Height (cm) 169.7 ± 10.7 168.5 ± 10.6 0.6204

Weight (kg) 76.3 ± 18.4 79.2 ± 11.0 0.4039

Body mass index (kg/m2) 26.6 ± 6.1 27.9 ± 3.5 0.2552

Hemoglobin (g/dl) 14.1 ± 3.9 13.9 ± 2.1 0.7803

White blood cells (x 103/mm3) 11.9 ± 2.9 12.8 ± 4.7 0.3093

Platelet count (x 103/mm3) 271.3 ± 68.2 260.5 ± 84.5 0.5354

INR - 1.1 ± 0.1 -

Sedimentation (mm/h) 14.6 ± 4.9 13.2 ± 9.0 0.3930

C-reactive protein  (mg/L) 0.6 ± 0.3 6.5 ± 5.1 <0.0001

Creatinine  (mg/dl) 0.8 ± 0.3 0.7 ± 0.2 0.0890

Na+ (mmol/L) - 137.2 ± 3.8

K+ (mmol/L) - 3.9 ± 0.5

Smoking status (n, %)  1.0000

Yes 7 (17.5) 6 (15.8)

No 33 (82.5) 32 (84.2)

Comorbidity (n, %)

Hypertension - 13 (34.2)

Heart valve disease - 1 (2.6)

Coronary artery disease - 1 (2.6)

Asthma - 1 (2.6)

Hypothyroidism - 1 (2.6)

GCS - 11.9 ± 2.5

Fisher scale - 2.9 ± 0.9

Hunt and Hess grading - 2.6 ± 1.0

Data show mean ± SD values. INR: International normalized ratio, GCS: Glasgow coma scale.
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evaluating the role of thiol/disulphide homeostasis in patients 
with aSAH (1). We observed that there was a diminished TAS 
value but no changes in OSI and TOS values in aSAH patients. 
However, Abdallah et al. described augmented TOS and OSI 
and suppressed TAS values in patients with aSAH (1). Our 
data pertaining to decreased TAS values were supported by 
this study. We found no correlation between the OSI and the 
thiol/disulphide values, as demonstrated by Abdallah et al. 
(1). However, we observed positive correlations between Hunt 
and Hess grading and TOS. We also revealed that there were 
positive correlations between NO levels and native thiol or total 
thiol levels. Notably, antioxidant vitamin E was administered 
daily to all patients in the study performed by Abdallah et al., 
which might have influenced the results (1). 

dismutase (SOD) enzymes in CSF and plasma have been 
reported to be linked to long-term poor neurological outcomes 
after aSAH (28). Kaynar et al. demonstrated that the mean 
CSF SOD levels were lower and that serum malondialdehyde 
levels were higher than the controls, suggesting that the levels 
of antioxidants are diminished after the onset of SAH, possibly 
because of increased oxidative stress (26). Taken together, we 
postulate that the aSAH resulted in the excessive generation 
of oxidative stress, which may cause various neuropathologic 
changes during brain injury. 

We demonstrated decreased serum total and native thiol levels 
and augmented disulphide levels in aSAH patients. These 
findings are consistent with the previous study published by 
Abdallah et al. (1). In fact, there is only one published study 

Figure 1: Serum and cerebrospinal fluid (CSF) total antioxidant 
status (TAS), total oxidant status (TOS), and oxidative stress index 
(OSI) in the control (n=40) and patient (n=38) groups. Values are 
indicated as mean ± SD, *p=0.0143 when compared to controls. 

Figure 2: Serum and cerebrospinal fluid (CSF) native thiol, total 
thiol, and disulphide levels in the control (n=40) and patient 
(n=38) groups. Values are provided as mean ± SD, **p=0.0014, 
***p<0.0001 when compared to controls. 
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Table II: Correlations Between Thiol/Disulphide Homeostasis, Scales/Grades, and Serum NO Levels in Patients with aSAH

Parameters Correlation coefficient (r) Coefficient of determination (r2) p-value
GCS ↔ Fisher scale -0.7069 0.4997 <0.0001
GCS ↔ Hunt and Hess grading -0.9008 0.8114 <0.0001
Fisher scale ↔ Hunt and Hess grading 0.6851 0.4693 <0.0001
Hunt and Hess grading ↔ TOS 0.3484 0.1214 0.0320
NO ↔ Native Thiol 0.4138 0.1712 0.0167
NO ↔ Total Thiol 0.4270 0.1823 0.0132
Native Thiol ↔ Total Thiol 0.7476 0.5589 <0.0001
Total Thiol ↔ Disulphide 0.5971 0.3566 <0.0001
GCS: Glasgow Coma Scale; TOS: Total oxidant status; NO: Nitric oxide.

Figure 3: Serum and cerebrospinal fluid (CSF) native thiol/total thiol 
ratio, disulphide/native thiol ratio, and disulphide/total thiol ratio in 
the control (n=40) and patient (n=38) groups. Values are presented 
as mean ± SD, ***p<0.0001 when compared to controls.

Figure 4: Serum and cerebrospinal fluid (CSF) nitric oxide (NO) 
levels in the control (n=40) and patient (n=38) groups. Values are 
indicated as mean ± SD, ***p<0.0001 when compared to controls. 

We found that serum (but not CSF) NO levels were markedly 
augmented during surgery in aSAH patients. Our findings 
related to CSF NO levels are supported by the results indicating 
that the CSF nitrite levels determined in the control group were 
similar to levels in the SAH group on Days 0 (24). However, our 
results related to NO are not consistent with those of Ramesh 
et al., who showed that the plasma concentrations of the 
NOx were markedly reduced in the patients group (39). This 
difference in NO levels may be related to the collection time 
of the blood samples. We collected blood samples during the 
operations, but Ramesh et al. collected samples at the time 
of admission of each patient (39). After SAH, hemoglobin and 
oxyhemoglobin bind NO and cause a loss of NO. However, 
Yatsushige et al. revealed that NO exceeded baseline values 
within 24 h after SAH and remained elevated thereafter 
(51). However, the immunological response after SAH, 
particularly following the interaction of the vascular tissues 
with oxyhemoglobin, induces a reactive augmentation in the 
inducible form of NO synthase (iNOS) expression in activated 
microglia and macrophages. Upregulated iNOS induces the 
overproduction of NO, which appears to be responsible for 
NO-induced secondary injuries after SAH (22). A high level 
of NO may cause the peroxidative injury of cell membranes, 
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The main limitation of our study is the small sample size. It 
appears that it is essential to obtain clinical and biochemi-
cal values from larger patient cohorts for an enhanced under-
standing of the role of oxidative/nitrosative stress.

█   CONCLUSION 

Our results demonstrated that thiol/disulphide homeostasis 
play a pivotal role in pathological processes following aSAH. 
Moreover, plasma NO and thiol/disulphide levels can be used 
as candidate biomarkers for predicting outcomes in aSAH 
patients. Since the early determination and treatment of 
intracranial aneurysms can remarkably improve the survival 
rates of patients with aSAH, our findings may help enhance 
therapeutic strategies involving the reduction of oxidative 
stress in the early stages of aSAH.
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