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ABSTRACT

AIM: To investigate the relationship between tumor volume and serum microsomal prostaglandin E2 (mPGE2) levels in patients with 
astrocytic tumors.   
MATERIAL and METHODS: The study included patients with astrocytic tumors who were treated at our clinic between August 
2015 and December 2016. Preoperative and postoperative contrast-enhanced cranial magnetic resonance imaging (MRI) scans 
were performed (within the first 24 h), and preoperative and postoperative residual tumor volumes were calculated. Microsomal 
prostaglandin E2 (mPGE2) levels were measured and compared in the serum samples of the patients before surgery, on the first day 
after surgery, and at 1 week after the surgery.
RESULTS: The study included 20 patients, 13 of whom were males and 7 were females, with a mean age of 57.20 ± 14.66 yr. The 
mean postoperative tumor volume was 9,180.69 mm3 (range, 0.00–41,961.60), which was significantly lower than the preoperative 
mean tumor volume of 37,323.84 mm3 (range, 4,457.40–108,247.20; z = −3.920, p<0.001). On the first postoperative day, the 
mean mPGE2 level was 1,776.50 pg/ml (range, 771–5,010), which was similar to the preoperative mean mPGE2 level of 1,769.20 
pg/ml (range, 681–3,480). On the seventh postoperative day, the mean mPGE2 level was 955.50 pg/ml (range, 31–2,130), which 
was significantly lower than the preoperative and postoperative first-day mean mPGE2 levels (p<0.001). No correlation was found 
between preoperative and postoperative tumor volumes and mPGE2 levels.
CONCLUSION: Compared with preoperative mPGE2 levels, mPGE2 levels decreased significantly on the seventh postoperative 
day. However, no correlation was observed between the tumor volume removed and decrease in mPGE2 levels.  
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people worldwide (20,27). According to the 2021 World Health 
Organization classification, gliomas can be divided into adult-
type diffuse gliomas, astrocytoma (isocitrate dehydrogenase 
(IDH)-mutant), oligodendroglioma (IDH-mutant and 1p/19q-
codeleted), and glioblastoma (GBM; IDH wild-type) subtypes 
(20). Apart from brain and vascular diseases, gliomas are the 
most common cause of death in the central nervous system. 
In patients with Glioblastoma Multiforme (GBM), a 5-yr overall 
survival rate of 6.8% has been reported (26).

█   INTRODUCTION

Primary brain tumors have a poor prognosis and are one of 
the most devastating malignancies that negatively affect 
cognitive abilities of the patients, impair their quality of 

life, and account for approximately 2.5% of all cancer-related 
deaths (25). Glioma is one of the most aggressive types of 
brain cancer, which account for approximately 80.8% of 
malignant central nervous system tumors and affect millions of 
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Researchers have focused on molecular mechanisms, such as 
tumor cell growth, proliferation, development, and metastasis, 
to provide effective treatment of tumors. The fate of tumor 
cells can be determined by factors, such as tumor microen-
vironment, tumor cell heterogeneity, tumor cell presence, and 
inflammatory mediators (1). Inflammatory mediators are very 
important in tumor development and progression (3,14,22). 
Prostaglandins and leukotrienes, both potent inflammato-
ry mediators, play a role in tumorigenesis and progression 
(11,13,37). Cyclooxygenase-2 (COX- 2) is associated with tu-
mor cell proliferation, angiogenesis, apoptosis, invasion, and 
drug resistance (7,12,16,32). Furthermore, prostaglandin E2 
(PGE2), which is the main product of COX-2, increases in co-
lon, lung, breast, and head and neck cancers (10,17,23,31). 
Increased COX-2 and PGE2 levels are believed to be associ-
ated with a poor prognosis in malignant lesions (28).

Studies have been conducted to determine prognostic factors 
for all cancers, including brain cancers. Studies have shown 
that PGE2 levels increase in brain tumors (2,6,18). However, no 
study has been conducted so far to determine whether PGE2 
can be used as a prognostic factor. Thus, this study aimed to 
determine preoperative and postoperative microsomal PGE2 
(mPGE2) levels in patients with glioma and determine their 
relationship with tumor volume.

█   MATERIAL and METHODS
This prospective study was conducted at our clinic, with 
ethics approval granted by Izmir Bozyaka Education and 
Research Hospital Ethics Committee (approval number 
26.06.2015/404-421), and all participants provided written 
informed consent in accordance with the Declaration of Hel-
sinki. The study included 20 patients who were radiologically 
diagnosed with an astrocytic tumor and scheduled for surgery 
between August 2015 and December 2016. Pediatric patients 
(<18 years), patients with pathologically confirmed absence 
of astrocytic tumors, patients with recurrent tumors, patients 
previously treated with chemotherapy and/or radiotherapy, 
patients with active infection, and pregnant patients were ex-
cluded from the study.

The patients’ magnetic resonance imaging (MRI) images were 
captured using a Philips Brilliance 230 1.5 Tesla MRI device 
(Philips Medical Systems, The Best, Netherlands). All pa-
tients underwent preoperative and postoperative contrast-en-
hanced cranial MRI. The following measurements were taken 
for the contrast-enhanced T1 sequence: TR/TE, 456/8.0; sec-
tion thickness, 6 mm; section interval, 1 mm; NSA, 2 FOV; 
AP, 210; RL, 214; and FH, 253. The patients’ preoperative 
tumor volumes were calculated as square millimeters of the 
contrast-enhanced tumor area in each section, beginning 
with the first section where the lesion was visible in the con-
trast-enhanced T1 sequence. Tumor volumes in cubic millime-
ters were calculated by multiplying the cross-sectional area 
of the contrast-enhanced tumor by its thickness. Therefore, 
three-dimensional tumor volumes in cubic millimeters were 
calculated from the two-dimensional cross-sectional areas 
of the irregularly shaped tumor tissue. The three-dimensional 
volumes of irregularly shaped tumor tissues (22) were calcu-
lated using the modified Cavalieri method (Figure 1).

To rule out infection, serum C-reactive protein (CRP), eryth-
rocyte sedimentation rate (ESR), and white blood cell (WBC) 
counts were measured in patients. CRP, ESR, WBC, and se-
rum mPGE2 levels were measured in patients preoperatively 
(before corticosteroid treatment), on the first postoperative 
day, and on the seventh postoperative day three times. To 
assess serum mPGE2 enzyme levels, an enzyme-linked im-
munosorbent assay (ELISA; Elabscience Cat. No. E-EL-0034) 
was used.

Statistical Analysis

SPSS 20 statistical software was used for the statistical 
analysis. Mean, standard deviation, frequency, and percentage 
are examples of descriptive statistics. The Shapiro–Wilk test 
and graphical examination were used to determine whether 
the quantitative data conformed to the normal distribution. The 
Friedman test was used to compare repeated measurements. 
If there was a difference in the measurements, the Wilcoxon 
test was used to compare them. For the correlation of 
numerical variables, Spearman correlation analysis was used. 
The significance level for all statistical analyses was set at 
p<0.05.

█   RESULTS
The study included 13 male patients and 7 female patients, with 
a mean age of 57.20 ± 14.66 yr. Table I shows the demographic 
information for the patients. Seizures were the most common 
complaint (30%, n=6), followed by speech disorders (25%, 
n=5). Tumors were found in the left hemisphere in 10 patients 
and the right hemisphere in the other 10. There were 18 GBM 
patients and two oligodendroglioma patients.

Table II compares tumor volumes and mPGE2 levels before 
and after surgery. The postoperative mean tumor volume 
was 9,180.69 mm3 (range, 0.00–41,961.60), which was 
significantly lower than the preoperative mean tumor volume 
of 37,323.84 mm3 (range, 4,457.40–108,247.20; z = −3.920, 
p<0.001). An average of 28,143.15 mm3 (range, 4,457.40–
73,434) of tumor tissue was removed during the operations.

Figure 1: A) Preoperative, and B) postoperative contrast-
enhanced T1W MRI sections for calculating tumor volume.
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The preoperative mPGE2 level was 1,769.20 pg/ml on average 
(range, 6810–3,480.00). On the first postoperative day, the 
mean mPGE2 level was 1,776.50 pg/ml (range, 771–5,010), 
which was comparable with the preoperative mean mPGE2 
levels. On the seventh postoperative day, the mean mPGE2 
level was 955.50 pg/ml (range 31.00–2,130.00), which was 
significantly lower than the preoperative and postoperative 
first-day mean mPGE2 levels (p<0.001). The mean mPGE2 
level decreased by 813.70 pg/ml on the seventh postoperative 
day compared with the preoperative mean mPGE2 level.

Table III shows the relationship between preoperative and 
postoperative tumor volumes and mPGE2 levels. There was 
no relationship between preoperative mPGE2 levels and 
tumor volume. There was no correlation between the amount 
of tumor tissue left after surgery and mPGE2 levels measured 
on the first and seventh postoperative days.

Table IV shows the relationship between the surgically re-
moved tumor mass and the difference in mPGE2. The sur-
gically removed tumor mass did not correlate with either the 
postoperative first-day preoperative difference or the postop-
erative seventh-day preoperative difference. There were no 
correlations between preoperative and postoperative tumor 
volume, mPGE2 levels, age, gender, and tumor localization 
(Table V).

█   DISCUSSION
Herein, we investigated the relationship between tumor 
volume and mPGE2 in patients with glioma. Seven days after 
surgery, we detected a significant decrease in mPGE2 levels. 
However, no correlation was observed between the tumor 
volume removed and decrease in mPGE2 levels.

The COX pathway plays a pivotal role in tumor initiation, 
growth, and apoptosis. Studies have shown that COX isoforms 
are overexpressed in lung, liver, pancreatic, breast, colorectal, 
and head and neck cancers, renal cell carcinoma, leukemia, 
and lymphoma (8,24,39). Furthermore, many brain tumors ex-

Table I: Demographic Characteristics of Patients

Characteristic Value

Age (years, mean ± SD) 57.20 ± 14.66

Time of onset (days) (median, min–max) 30 (1–300)

Sex (n, %)

Male 13 (65)

Female 7 (35)

Symptoms (n, %)

Headache 4 (20)

Disorders of consciousness 3 (15)

Speech disorder 5 (25)

Motor deficit 2 (10)

Seizure 6 (30)

Lesion site (n, %)

Right frontal 2 (10)

Right parietal 2 (10)

Right temporal 3 (15)

Right temporoparietal 3 (15)

Left frontal 3 (15)

Left frontoparietal 1 (5)

Left parietal 2 (10)

Left parieto-occipital 1 (5)

Left temporal 3 (15)

Tumor histology (n, %)

Glioblastoma 18 (90)

Oligodendroglioma 2 (10)

Table II: Comparison of Preoperative and Postoperative Tumor Volumes and mPGE2 Levels

Variables Mean ± SD
Median (min–max)

Preoperative tumor volume 37,323.84 ± 27,044.30
32,469.90 (4,457.40–108,247.20) z = −3.920

p<0.001
Postoperative tumor volume 9,180.69 ± 11,959.42

5,732.70 (0.00–41,961.60)

mPGE2 (preoperative) 1,769.20 ± 734.64
1,660 (681–3,480)

X2 = 56.200
p<0.001mPGE2 (postoperative first day) 1,776.50 ± 976.55

1,570 (771–5,010)

mPGE2 (postoperative seventh day) 955.50 ± 475.14a,b

832 (31.00–2,130)

X2: Friedman test, z: Wilcoxon test, mPEG: Microsomal Prostoglandin E2. ap<0.001 compared with mPGE2 (preoperative). bp<0.001 compared 
with mPGE2 (postoperative first day).
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with GBM, is associated with poor survival (33). In another 
study of 43 patients with GBM, patients with COX-2-negative 
glioblastoma had a median survival that was more than twice 
than in patients with COX-2-positive glioblastoma (5). Anoth-
er study found that primary glioblastomas with high COX-2 
expression had a shorter radiological recurrence than tumor 
cells with lower COX-2 expression levels (34). As a result, it 
has been proposed that COX-2 expression is a strong predic-
tor of glioma aggressiveness and poor survival, independent 
of other variables (33). In another recent study, Panagopoulos 
et al. reported higher PGE2 content in GBM tumors than in 
low-grade gliomas. Furthermore, researchers found that the 
higher the PGE2 concentration, the lower the patient’s survival 
(28). In vitro studies have shown that selective COX-2 inhibi-
tors increase GBM susceptibility to chemotherapy and radio-
therapy, increase apoptosis and cell death, and reduce tumor 
migration (15,29,35). In animal models, the administration of 
a COX-2 inhibitor together with temozolomide increases the 
cytotoxic effect of the drug on GBM and improves the average 
survival rate (21,38).

press high COX-2 levels (29). Anagnostopoulos-Schleep et al. 
reported that PGE2 and PGF2α are expressed by a variety of 
brain tumors, such as gliomas and meningiomas (2). Kokog-
lu et al. found that PGE2 levels in gliomas and meningiomas 
were significantly higher than in control tissues (18). Moreover, 
they documented that meningiomas had significantly high-
er PGE2 levels than gliomas. In their study on brain tumors, 
Venza et al. observed a positive correlation between PGE2 
overproduction and IL-8 gene activation only in case of as-
trocytomas. The researchers also found that the positive cor-
relation between mPGE synthase-1 and IL-8 mRNA levels was 
independent of tumor histological grade (36). Further, Casteli 
et al., while examining gliomas from different histological sub-
groups, reported that PGE2 production increased with ana-
plastic grade (6). Higher PGE2 levels in rapidly growing ma-
lignant brain tumors compared to slow-growing benign brain 
tumors have been associated with a poor prognosis (19).

A study of surgical specimens from 66 patients with astrocyto-
mas found that high COX-2 expression, particularly in patients 

Table III: Correlation Between Preoperative and Postoperative Tumor Volumes and mPGE2 Levels

mPGE2
(preoperative)

mPGE2
(postoperative first day)

mPGE2
(postoperative seventh day)

ρ p-value ρ p-value ρ p-value

Preoperative volume 0.115 0.629

Postoperative volume — — 0.407 0.075 −0.274 0.242

ρ: Spearman correlation coefficient, mPEG: Microsomal prostoglandin E2.

Table IV: Correlation Between Surgically Removed Tumor Volume and Decrease in mPGE2 Levels

mPGE2
(preoperative–postoperative first day)

mPGE2
(preoperative–postoperative seventh day)

ρ p-value ρ p-value

Tumor volume −0.214 0.366 −0.48 0.840
ρ: Spearman correlation coefficient.

Table V: Relationship Between Demographic Data and Tumor Volume and mPGE2 Levels

Lesion site Gender Age

Preoperative volume X2 = 7.562
p = 0.477

z = −0.357
p = 0.721

ρ = 0.125
p = 0.600

Postoperative volume X2 = 12.551
p = 0.128

z = −1.078
p = 0.281

ρ = −0.027
p = 0.911

mPGE2 (preoperative) X2 = 4.861
p = 0.772

z = −0.357
p = 0.721

ρ = −0.317
p = 0.173

mPGE2 (postoperative first day) X2 = 9.629
p = 0.292

z = −0.436
p = 0.663

ρ = −0.336
p = 0.147

mPGE2 (postoperative seventh day) X2 = 5.300
p = 0.725

z = −0.277
p = 0.782

ρ = −0.069
p = 0.771

X2: Kruskal–Wallis test; z: Mann–Whitney U test; ρ: Spearman correlation coefficient.
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expression have been associated with a poor prognosis in gli-
oma (4,9,30).

This study aimed to determine the relationship between 
mPGE2 and prognosis by comparing the pre- and postopera-
tive levels of mPGE2, which has previously been shown to be 
associated with a poor prognosis in gliomas. In our study, the 
tumor volume was reduced by surgery; however, the postop-
erative first-day mPGE2 values were found to be similar to the 
preoperative mPGE2 values. The mPGE2 values being similar 
to the preoperative mPGE2 values on the first postoperative 
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Our study has certain limitations. First, it was a single-centered 
study. Second, it had a small sample size. Last, it did not have 
a control group.

█   CONCLUSION
This study examined the relationship between tumor volume 
and mPGE2 levels in patients with glioma. mPGE2 levels 
decreased significantly on the seventh postoperative day 
compared with preoperative mPGE2 levels. However, no 
correlation was observed between the tumor volume removed 
and decrease in mPGE2 levels. The findings of our study 
should be re-evaluated in larger patient population studies.
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