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ABSTRACT

AIM: To compare T1-weighted contrast-enhanced (T1+C) with fast imaging employing steady-state acquisition (FIESTA) magnetic 
resonance imaging (MRI) sequences to protect healthy brain tissue during meningioma treatment with Gamma-Knife radiosurgery 
(GKRS).   
MATERIAL and METHODS: After reviewing the data of 54 patients with solitary meningioma who underwent GKRS between 
January 2020 and June 2022, demographic characteristics were noted, tumor volumes on T1+C and FIESTA MRI sequences were 
measured, and sequences were compared. The patients were then divided into two groups according to the presence of invasion 
to intracranial venous sinuses (groups 1 and 2, respectively). SPSS 11.5 software was used for data analysis, with the level of 
significance set at 0.05.
RESULTS: While no significant age and tumor size differences were observed between groups 1 and 2, sinus invasion was 
significantly higher among males. Tumor volumes measured in both groups were significantly smaller on FIESTA sequences than 
on T1+C sequences.
CONCLUSION: The T1+C sequence has been the primary imaging method because of meningiomas’ high contrast enhancement 
feature. However, the T1+C sequence during GKRS planning is an effective imaging method in treating meningiomas; FIESTA 
sequences can more precisely delineate the tumor border. In this study, we consider that using the FIESTA/CISS sequence MRI for 
planning meningioma therapy with Gamma-Knife can reduce target volume and prevent irradiation of healthy brain tissue.
KEYWORDS: FIESTA/CISS, Meningioma, Gamma-Knife radiosurgery, Magnetic resonance imaging, Image-guided neurosurgery, 
Radiosurgery, MRI sequences
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█   INTRODUCTION

Meningiomas are the most common benign intracranial 
tumors in adults, constituting around 34% of all brain 
tumors (41). Although surgical resection is the first-

line treatment in managing extensive tumors, stereotactic 
radiosurgery (SRS) can be a safe and effective alternative, 
especially for small meningiomas and those adjacent to 
critical neurovascular structures (19).

The Gamma-Knife radiosurgery (GKRS) is a unique, non-in-
vasive, stereotactic radiotherapy method that utilizes precise-
ly targeted gamma radiation beams to deliver concentrated 
doses of radiation to intracranial lesions such as metasta-
ses, schwannomas, arteriovenous malformations, meningio-
mas, and, less frequently, glial tumors, as well as for specific 
pathologies like trigeminal neuralgia, essential tremor, and 
obsessive-compulsive disease while sparing surrounding 
healthy tissue (42).

Magnetic resonance imaging (MRI) is indispensable in GKRS 
planning for the treatment of all aforementioned pathologies. 
T1-enhanced (T1+C) sequences are preferred for evaluating 
lesions. Generally, gadolinium-based contrast agents short-
en the T1 relaxation time and make meningiomas appear hy-
perintense in the T1 series (10). Nowadays, more than 500 
million doses of gadolinium have been used for MRI despite 
its well-known toxic side effects, such as nephrotoxicity and 
problems with muscle contraction and nerve conduction (11, 
14). One of the contrast-free techniques is fast imaging em-
ploying steady-state acquisition (FIESTA) with high-resolution 
T2-weighted MRI sequences, which has a high signal-to-noise 
ratio that provides well-contrasted images (6). 

This study aimed to evaluate the efficiency of FIESTA and T1-
enhanced (T1+C) MRI sequences during GKRS planning for 
meningiomas.

█   MATERIAL and METHODS
The written informed consent was taken for each participant 
in this study. The Ethical Institutional Review Board of 
Pamukkale University reviewed and approved this study 
protocol (E-60116787-020-258960). It was conducted in line 
with the requirements of the Declaration of Helsinki.

MRI images from 102 patients with meningiomas who had un-
dergone GKRS (Leksell Gamma-Knife® Perfexion™) between 
January 2020 and June 2022 at Pamukkale University were 
reviewed. GKRS planning was conducted using T1+C MRI 
sequences as suggested. Furthermore, FIESTA MRI examina-
tions were performed using the specified parameters (repeti-
tion time/echo time, 6,7/2,8 msec; FA 60°; matrix, 320X256; 
section thickness, 2 mm; intersection gap, 0 mm; field of view, 
240X240 mm). Patients who had previously undergone sur-
gery or received other treatments, such as radiotherapy, were 
excluded from the study, as their inclusion could compromise 
the evaluation of the assessed MRI images. Therefore, we 
retrospectively reviewed the data of 54 patients with solitary 
meningioma who underwent first-time GKRS. The patients 
were divided into two groups: Group 1 consisted of those with 

meningiomas with venous sinus invasion (Sindou Type I–VI) 
(35), whereas Group 2 consisted of those without invasion. 
The reason for dividing groups according to their sinus inva-
sion is that the dural sinus’s high and homogenous contrast 
enhancement may reveal similar to adjacent meningioma and 
exaggerate the target volume. Therefore, we decided to in-
vestigate the meningiomas with sinus invasion separately.  In 
addition, the demographic data, tumor volumes (in T1+C and 
FIESTA MRI sequences), and anatomical locations of the tu-
mors were examined, as shown in Figures 1 and 2.

Statistical Analysis

SPSS 11.5 software was used for data analysis. Quantitative 
variables were presented as mean ± standard deviation and 
median (minimum-maximum), whereas qualitative variables 
were presented as the number of patients (percentage). 
Differences in the categories of qualitative variables and the 
two categories of quantitative variables were determined 
using the Student t-test for normality distributed data and the 
Mann-Whitney U test for non-normally distributed data. The 
Wilcoxon signed-rank test was used to determine differences 
in the two dependent quantitative variables (before-after), 
given that the assumptions of a normal distribution were not 
satisfied. The level of significance was set at 0.05 (p<0.05).

█   RESULTS
Patient demographic data (i.e., age and gender) and tumor 
volume results on each sequence are summarized in Table I. 
A median dose of 14 Gy (12–18 Gy) was prescribed to that 
isodose-line covering 97–100% of the target volume. The 
mean age of the patients was 58.72 ± 13.35 (range 35–89) 
years and 57.48 ± 12.31 (38–92) years in group 1 (n=29) and 
group 2 (n=25), respectively. No significant difference in patient 
age was observed between the two groups. Males accounted 
for 10.3% (n=3) and 40% (n=10) of the patients in groups 
1 and 2, respectively. Sinus invasion was more common in 
males than females (p=0.011). Tumor volume measurements 
on both T1+C and FIESTA sequences revealed higher tumor 
volume in group 2 than in group 1, albeit insignificant (p>0.05). 
Nevertheless, tumor volume measurements in both groups 
were smaller on FIESTA sequences than on T1+C sequences 
(p<0.01; Table II).

█   DISCUSSION
To the best of our knowledge, this has been the first study 
published on the potential benefit of the FIESTA MRI sequence 
during GKRS planning for treating solitary meningiomas. Me-
ningiomas, the most common benign intracranial tumors, are 
generally asymptomatic when smaller than 2 cm (24). Around 
2.5% of meningiomas are incidentally detected during MRI 
studies performed on adult patients (4). Treatment approach-
es have been controversial, especially for incidental meningi-
omas (7,15,25,43). Generally, surgery is not preferred in cases 
with asymptomatic or mild symptoms (e.g., headache), espe-
cially in tumors <3 cm. Among patients in which meningio-
mas were incidentally detected, 24–57% showed progression 
during follow-up without any intervention (15,25,31). Sughrue 
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Figure 1: A) The purple line 
represents the right parasagittal 
meningioma border determined 
by T1 contrast-enhanced MRI for 
GKRS. B) The yellow line represents 
the right parasagittal meningioma 
border in the same section of the 
same tumor on FIESTA sequence 
MRI.

Figure 2: A) The purple line represents the right cerebellar meningioma border determined by T1 contrast-enhanced MRI for GKRS.         
B) The yellow line represents the border of the right cerebellar meningioma in the same section of the same tumor on FIESTA sequence 
MRI.
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understanding the association with the dural sinuses is es-
sential. Exaggerated tumor volume delineation due to misin-
terpretation of the dural sinus as a lesion might lead to ex-
cessive irradiation of normal tissues. We examined FIESTA 
MRI sequences to distinguish between the dural sinuses and 
meningiomas and trace the tumor borders in our study. Giv-
en that T1-enhanced MRI may show meningiomas and dural 
sinuses in almost the same signal intensity, we speculate that 
the tumor volume might appear larger than it should be. In the 
present study, comparing T1-enhanced and FIESTA sequenc-
es in the same tumor revealed that the determined tumor was 
significantly smaller on FIESTA sequences. Furthermore, we 
observed that all meningioma volumes were significantly more 
diminutive on the FIESTA series than on the T1-enhanced se-
ries (p<0.05).

Several studies have been published regarding FIESTA MRI 
sequences in tumor imaging and follow-up. In 2009, Özgen 
et al. used only follow-up imaging of vestibular schwannomas 
to inspect the accuracy of constructive interference in steady-
state (CISS) sequence. Notably, they reported 100% sensi-
tivity, specificity, and accuracy in detecting the progression 
of the CISS sequence (26). Abele et al., who used CISS and 
coronal T2-weighted MRI sequences to see small (≤10 mm) 
internal auditory canal lesions, found a 100% sensitivity for 
tumor detection (1). In 2021, Arya et al. demonstrated that 3D 
FIESTA MRI sequences showed 100% sensitivity and spec-
ificity in assessing the cerebellopontine angle (CPA) tumor 
borders and cranial nerve involvement (2). Moreover, Lang et 
al., who compared CISS and T1-weighted MRI sequences for 
imaging pituitary adenomas in Cushing’s patients, suggested 

et al., who examined the natural history of meningiomas, in-
dicated that these lesions would likely become symptomatic 
when growth exceeds 10% per year. Peritumoral hyperinten-
sity occurs on the T2 sequence during follow-up. In contrast, 
they stated that tumors <2 cm and with a yearly growth of 
<10% have a close to 0% probability of being symptomat-
ic (37). In such cases, GKRS is frequently employed as the 
treatment method (28,31), especially in critical areas such 
as the skull base (12,23). GKRS has been considered a safe 
treatment approach for meningiomas in areas wherein surgi-
cal intervention carries high risk, providing low morbidity and 
5-year progression-free survival of over 90%  (3,29,31).

GKRS usually involves using single or multiple isocenters with 
different beam diameters to obtain a treatment plan that fits 
the 3D volume of the target. Although the basic principle of 
GKRS is to irradiate the target through high-dose gamma rays, 
evidence has shown that surrounding tissues are also affected 
by this radiation (3). In addition, studies have revealed that 
GKRS can cause lethal toxicity by inducing radiation necrosis, 
with an incidence of 5–24% (32). Moreover, peritumoral edema 
may develop or increase by 7–38% after GKRS (20,27,33,34). 
Pre-existing peritumoral edema raised brain parenchyma–
meningioma contact surface, parasagittal and parafalcine 
locations, tumor size, and high-grade pathology have been 
identified as factors for increasing the incidence of edema in 
such cases (5,9,17,20,27,33,34,39).

Several studies suggest that different radiological examina-
tions could be used in the differential diagnosis and follow-up 
of cranial lesions (8,13,16,30,36,38,40). While planning GKRS, 

Table I: Comparison of Variables Between the Groups

Variables Group 1 Group 2 p-value

Age
Mean ± SD 58.72 ± 13.35 57.48 ± 12.31

0.596
Median (Min–Max) 58.00 (35.00–89.00) 56.00 (38.00–92.00)

Gender; n (%)
Male 3 (10.3) 10 (40.0)

0.011
Female 26 (89.7) 15 (60.0)

T1+C
Volume (cm3)

Mean ± SD 3.22 ± 2.92 4.39 ± 3.41
0.143

Median (Min–Max) 2.32 (0.34–11.99) 3.30 (0.61-12.93)

FIESTA Volume (cm3)
Mean ± SD 2.36 ± 2.41 3.36 ± 3.04

0.125
Median (Min–Max) 1.60 (0.16–10.46) 2.21 (0.47–11.80)

SD: Standard deviation, Min: Minimum, max: maximum.

Table II: Comparison of within-Group T1-Enhanced and FIESTA Sequences

Group
T1+C Volume (cm3) FIESTA Volume (cm3)

Mean ± SD Median (Min–Max) Mean ± SD Median (Min–Max) p-value

1 3.22 ± 2.92 2.32 (0.34–11.99) 2.36 ± 2.41 1.60 (0.16–10.46) <0.001

2 4.39 ± 3.41 3.30 (0.61–12.93) 3.36 ± 3.04 2.21 (0.47–11.80) <0.001

SD: Standard deviation; Min: Minimum; max: Maximum.
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