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ABSTRACT

AIM: To evaluate bilateral double rod contructs in thoracolumbar fractures in a Finite Element model   
MATERIAL and METHODS: A computed tomography of a 35-year old male have been chosen to create a vertebra model and 1/3 
of the T12 was removed to create the burst fracture model. In model A, transpedicular polyaxial screws were inserted two levels 
above and two levels below the burst fracture. On each side the screws were connected with a single rod. In model B, the screws 
were connected with two rods on each side attached to two lateral connectors. A uniform 150 N axial load and 10 N/m torque was 
applied on the superior T10.
RESULTS: ROM and von Mises stress nephrograms revealed that the bilateral double-rod construct is being the most rigid and that 
the force on the pedicle screws were significantly lower compared to model A.
CONCLUSION: We believe that bilateral double-rod constructs for the stabilization of thoracolumbar fractures have a decreased 
load on pedicle screws and rods compared to the classic bilateral single rod stabilization system and can lower the risk of implant 
failure and the risk for secondary complications and revision surgery.
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mentation, involving fusion of more than two levels above 
and below the fracture, is the preferred option to achieve en-
hanced rigidity and correction of post-traumatic kyphosis (16). 
However, one of its drawbacks is the risk of implant failure 
(IF), such as screw and rod breakage. Till date, several bio-
mechanical and clinical trials have been conducted to inves-
tigate TLF surgery (12). Some studies have explored the use 
of classic bilateral single-rod fixation systems, with or without 
interbody fusion, for TLF. However, no finite element analy-
ses (FEA) have been conducted on long-segment stabilization 
of TLF surgery with bilateral double-rod systems. Therefore, 
this study developed an FEA model of TLF with long-segment 

█   INTRODUCTION

Half of all vertebral fractures occur in the thoracolumbar 
junction, with burst fractures comprising two-thirds 
of these cases. Thoracolumbar burst fractures (TLF) 

are characterized by a compromised integrity of the anterior 
and middle vertebral columns, often resulting in instability and 
post-traumatic kyphosis. (19). Although its optimal treatment 
remains controversial, surgery is considered the gold standard 
for patients with instability and neurologic deficits, whether 
performed through a posterior, anterior or combined approach 
(4,20). In posterior stabilization surgery, long-segment instru-
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stabilization and bilateral double-rod fixation and assessed its 
biomechanical characteristics in comparison to bilateral sin-
gle-rod fixation. Moreover, bilateral double-rod constructs are 
hypothesized to exert less stress on pedicle screws and rods, 
potentially reducing the risk of IF.

█   MATERIAL and METHODS
The ethical committee’s approval was obtained in accordance 
with the Helsinki Declaration (Memorial Bahcelievler; approval 
number: 72, date: 05.01.2023). Written consent was obtained 
from a healthy individual for the creation of a vertebra model.

Creating the Finite Element model

A healthy 35-years old male with no confirmed history of 
spinal trauma or lesions, was selected to create the vertebra 
model for FEA. A computed tomography (CT) scan of the 
T9-L3 region was performed using a Siemens SOMATOM 
Definition Flash device (Siemens AG, Erlangen, Germany), 
capturing 1 mm thick image slices in the Digital Imaging and 
Communications in Medicine (DICOM) format.

A three-dimensional homogenous model was generated using 
Rhinoceros v. 4.0 (Robert McNeel & Associates, Seattle, WA, 
USA) and VRMesh Studio (Virtual Grid Inc., Bellevue City, WA, 
USA) software. Subsequently, the models were imported into 
the Algor Fempro (ALGOR Inc., Pittsburgh, PA, USA) appli-
cation for analysis. An 8-knot type element was utilized for 
meshing the models, which were then converted into brick and 
tetrahedral solid elements. The resulting models in .stl format 
were subsequently imported back into Rhinoceros software. 
Since the structure of the intervertebral disc could not be de-
lineated using the CT images, its geometric and anatomical 
features were reconstructed based on previously published 
FEA models of the spine (9). In Rhinoceros, the continuity be-
tween the disc and the vertebral endplates was designed us-
ing the Boolean method, while dimensional and topographic 
characteristics were added in VRMesh. We employed mesh 
surface modeling (Mesh First Approach) to obtain highly de-
tailed and realistic organic 3D models that cannot be achieved 
through parametric surface modeling.

The final model was integrated into the x, y, z-coordinates 
within Rhinoceros, completing the model creation process. 
The entire FEA analysis was conducted on a computer running 
Microsoft Windows 7 Ultimate, equipped with an Intel Xeon R 
3.5 GHz processor, 14 GB of RAM, and a 500 GB storage 
capacity.

Creating the thoracolumbar burst fracture model

To create the TLF model, the inferior one-third of the T12 
vertebra and the intervertebral disc between T12-L1 were re-
moved using VRMesh, following the methodology established 
in previous publications on TLF FEA models (5). Subsequently, 
the final model was imported into Algor Fempro and subdivid-
ed into planar-braided structures.

Fixation models

To simulate the fixation of TLF, two different models were 
used. In Model A, transpedicular polyaxial screws were insert-

ed two levels above and two levels below the burst fracture. 
On each side, the screws were connected with a single rod. In 
Model B, the screws were linked with two rods on each side, 
attached to two lateral connector (domino) devices between 
T11-T12 and L1-L2. In both models, each screw had a width 
and length of 6.5 mm and 45 mm, repectively (Figure 1). The 
physical characteristics, including elasticity model and Pois-
son’s ratio, are detailed in Table I. To validate the model’s ra-
tionale, a torque of 10 N/m and a compression force of 150 N 
were applied to the superior T10 vertebra. The range of move-
ment (ROM) under this load, in the form of flexion, extension, 
lateral bending, and rotation, was simulated and compared to 
two other biomechanical models by Pflugmacher (14) and Li 
(11) (Table II).

Boundary and loading Conditions

Latitude degrees below the L2 vertebra were restricted. A 
combination of a 150 N preload and a 10 N/m pure moment 
force was applied to the superior T10 vertebra, simulating 
flexion, extension, lateral bending, and rotational movements.

Analytic criteria

The ROM within the region spanning from T10 to L2 and the 
stress experienced by the pedicle screws and rods in both 
Model A and B, were analyzed using six distinct von Mises 
tension and stress criteria: flexion, extension, left lateral 
bending, right lateral bending, left rotation, and right rotation.

█   RESULTS
Range of motion

A uniform axial load of 150 N and a torque of 10 N/m were 
applied to the superior T10 vertebra, and the range of motion 
(ROM) for each side was recorded. In Model A, the results 
were as follows: 1.5° for flexion, 1.1° for extension, 1.9° for left 
lateral bending, 1.8° for right lateral bending, 1.6° for left axial 
rotation, and 1.6° for right axial rotation. In Model B, the ROM 
values were 1.3° for flexion, 1.0° for extension, 1.8° for left 
lateral bending, 1.8° for right lateral bending, 1.7° for left axial 
rotation, and 1.6° for right axial rotation.

Figure 1: A) 3D- thoracolumbar burst fracture model; B) Burst 
fracture model with bilateral single rod fixation (model A); C) Burst 
fracture model with bilateral double-rod fixation model (model B).

A B C
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Maximum von Mises tension on pedicle screws and rods

In the bilateral single-rod model (Model A), the von Mises 
tension on the pedicle screws was measured as follows: 87.9 
MPa in flexion, 94.7 MPa in extension, 110.7 MPa in left lateral 
bending, 112.3 MPa in right lateral bending, 37.9 MPa in left 
rotation, and 36.3 MPa in right rotation.

In the bilateral double-rod construct (Model B), the tension on 
the pedicle screws was as follows: 38.7 MPa in flexion, 46.7 
MPa in extension, 61.8 MPa in left lateral bending, 64.3 MPa 
in right lateral bending, 32.9 MPa in left rotation, and 31.2 MPa 
in right rotation.

Regarding Model A, the tension on the rods was calculated as 
177.2 MPa in flexion, 195.7 MPa in extension, 203.3 MPa in 
left lateral bending, 197.7 MPa in right lateral bending, 147.4 

MPa in left rotation, and 155.6 MPa in right rotation. In Model 
B, the results were as follows: 133.5 MPa, 144.6 MPa, 138.6 
MPa, 137.2 MPa, 132.3 MPa, and 135.3 MPa, respectively

Von Mises stress distribution nephogram on pedicle 
screws and rods

The von Mises tension distribution reveals that in both Model 
A and B, stress is exerted on both the rods and screws 
during flexion, extension, axial rotation, and lateral bending 
movements. Numerical values were significantly lower in 
Model B (Figure 2A-D). Stress during flexion and extension 
is primarily concentrated on the rods (Figure 2A, B). During 
lateral bending, the stress on the rods is most pronounced 
(Figure 2D). Higher tension on screws is observed in Model A, 
while the rods in Model A experience more tension than in the 
bilateral double-rod construct. The overall stress distribution 

Table I: Material Properties in the Present Finite Element Model

Component Young’s modulus 
(MPa) Poisson’s ratio Cross section (mm2)

Vertebra

Cortical bone 12000 0.30

Cancellous bone 100 0.20

End plate 1000 0.4

Intervertebral disc

Annulus fibrosus 450 0.45

Nucleus pulposus 0.2 0.49

Ligaments

Anterior longitudinal ligaments 20 0.40 63.7

Posterior longitudinal ligaments 20 0.30 20

Supraspinous and interspinous ligaments 10 0.30 40

Ligamentum flavum 15 0.30 40

Intertransverse ligament 10 0.30 40

Capsular ligament 8 0.30 30

Pedicle screw, lateral connector and rods 110000 0.30

Table II: Comparision of Range of Movement of Our Results and Plugmacher and Li’s Findings

Motion Model A Model B Pflugmacher Li

Flexion 4.5 4.4 5.3 4.6

Extension 4.7 4.3 5.7 4.5

Left lateral bending 4.0 4.1 4.3 4.6

Right lateral bending 4.0 4.2 4.3 4.8

Left axial rotation 2.9 2.1 2.1 3.2

Right axial rotation 2.9 2.1 2.1 3.2
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Figure 2: A) von Mises stress nephogram 
during flexion. In both simulations stress is 
distributed towards the rods and screws. 
Numerical values are lower in model B. 
B) von Mises stress nephogram during 
extension. In both simulations stress is 
distributed towards the rods and screws. 
Numerical values are lower in model B. 
C) von Mises stress nephogram during 
axial rotation. In both simulations stress is 
distributed towards the rods and screws. 
Numerical values are lower in model B. 
D) von Mises stress nephogram during 
lateral bending. In both simulations stress 
is distributed towards the rods and screws. 
Numerical values are lower in model B.

A

B

C

D
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methods (19). In posterior approaches, some authors advo-
cate for short-segment stabilization, involving fixation of only 
one vertebra above and one vertebra below the fracture. This 
approach is favored for its benefits, including reduced blood 
loss, shorter surgery time, and fewer implantation materials. 
Conversely, other authors recommend long-segment stabili-
zation for improved rigidity and a better chance of correct-
ing post-traumatic kyphosis (17). One of the most common 
complications associated with posterior stabilization of TLF 
is implant failure (IF), often resulting from bending or break-
age of screws and rods due to increased physical stresses 
during flexion, extension, bending, or rotational maneuvers 
(13). Literature reports indicate an incidence ranging from 
20% to 39% (10,17,18). In a 2014 case series by Eldin and 
Ali (8), which included 200 patients with IF, screw breakage 
was reported as the most common type of implant failure, fol-
lowed by rod fracture, rod loosening, screw loosening, and 
combinations of rod and screw loosening. Patients with IF 
typically experience moderate to severe back pain, and the 
risk of kyphosis and the need for revision surgery increase 
when the implanted construct is compromised (3). To address 
these complications, numerous biomechanical and clinical 
trials have been conducted, yet the incidence of IF remains 
high. In classic posterior stabilization of TLF, fixation is primar-
ily achieved using single rod constructs bilaterally attached to 
pedicle screws. Some authors suggest that, especially in cas-

indicates that stress on the screws and rods during all ROM 
simulations is significantly lower in Model B (Figure 3).

█   DISCUSSION
The thoracolumbar junction, where the more rigid thoracic 
vertebral region transitions to the more mobile lumbar region, 
is inherently susceptible to increased axial loads and fractures 
(7). In cases of thoracolumbar burst fractures (TLF), early sta-
bilization is considered the gold standard when instability and 
neurologic deficits are present (15). Surgical approaches for 
these fractures encompass posterior, anterior, or combined 

Table III: Evaluation of ROM between Model A and Model B

Model A Model B

Flexion 1.5 1.3

Extension 1.1 1.0

Left Lateral Bending 1.9 1.8

Right Lateral Bending 1.8 1.8

Left Rotation 1.6 1.7

Right Rotation 1.6 1.6

Table IV: von Mises Tension on Pedicle Screws and Rods

ROM Model A (screw) Model B (screw) Model A (rod) Model B (rod)

Flexion 87.9 MPa 38.7 MPa 177.2 MPa 133.5 MPa

Extension 94.7 MPa 46.7 MPa 195.7 MPa 144.6 MPa

Left lateral bending 110.7 MPa 61.8 MPa 203.3 MPa 138.6 MPa

Right lateral bending 112.3 MPa 64.3 MPa 197.7 MPa 137.2 MPa

Left rotation 37.9 MPa 32.9 MPa 147.4 MPa 132.3 MPa

Right rotation 36.3 MPa 31.2 MPa 155.6 MPa 135.3 MPa

Figure 3: Overall 
von Mises stress 
nephogram. A) Model 
A, increased stress on 
rods and screws (red) 
B) Model B, moderate 
stress on rods and 
screws (blue).

A B
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█   CONCLUSION
Our FEA model demonstrated that bilateral double-rod con-
structs used for stabilizing thoracolumbar fractures impose 
reduced loads on pedicle screws and rods compared to the 
traditional bilateral single-rod stabilization system. This sug-
gests that they may mitigate the risk of implant failure and 
lower the likelihood of secondary complications, potentially 
reducing the need for revision surgery.
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