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ABSTRACT

AIM: To investigate the relationship between planned drill approach angle and angular deviation of the stereotactically placed 
intracranial electrode tips.    
MATERIAL and METHODS: Stereotactic electrode implantation was performed in 13 patients with drug resistant epilepsy. A 
total of 136 electrodes were included in our analysis. Stereotactic targets were planned on pre-operative magnetic resonance 
imaging (MRI) scans and implantation was carried out using a Cosman-Roberts-Wells stereotactic frame with the Ad-Tech drill 
guide and electrodes. Post implant electrode angles in the axial, coronal, and sagittal planes were determined from post-operative 
computerized tomography (CT) scans and compared with planned angles using Bland-Altman plots and linear regression. 
RESULTS: Qualitative assessment of correlation plots between planned and actual angles demonstrated a linear relationship for 
axial, coronal, and sagittal planes, with no overt angular deflection for any magnitude of the planned angle.    
CONCLUSION: The accuracy of CRW frame-based electrode placement using the Ad-Tech drill guide and electrodes is not 
significantly affected by the magnitude of the planning angle. Based on our results, oblique electrode insertion is a safe and 
accurate procedure.
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█   INTRODUCTION

Stereotactic lead placement for stereotactic electroen-
cephalography (SEEG) is a procedure first described 
in a 1962 publication by neurosurgeon Jean Talairach 

and neurologist Jean Bancaud. SEEG allowed for access to 

subcortical deep brain structures to identify and monitor epi-
leptiform activity (24,29). There are several methods used for 
stereotactic electrode placement: frame-based (e.g., Leksell, 
Cosman-Roberts-Wells) (6,32), frameless (e.g., Nexframe) 
(19), and robotic (e.g., ROSA) (16,26). Stereotactic electrode 
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█   MATERIAL and METHODS
This study was approved by the University of Southern 
California IRB (ID: HS-22-00195) and was conducted in 
accordance with the principles embodied in the Declaration 
of Helsinki and local statutory requirements. All patients gave 
written informed consent prior to participation.

Study Design 

To assess electrode angular deflection, the planned electrode 
implant angle was compared with the final operative 
implant angle. The planned and final implant angles of the 
electrode insertion in the axial, coronal, and sagittal planes 
were compared to evaluate for drill deflection at the point of 
cranial entry. Specifically, these angles were defined as the 
divergence of the planned and final electrode paths from the 
normal line, which is the line perpendicular to the tangent line 
at the point of tangency (i.e., the electrode insertion point). This 
concept is illustrated in Figure 3, in which θ and ɸ represent 
the planned and final lead angles, respectively. For any given 
electrode, both planned and operative lead angles could be 
effectively visualized and measured in only two planes. As an 
example, an electrode path may be easily visualized on an “X 
and Y” axis in the axial and coronal plane but appear in the 
“Z” axis in the sagittal plane. The Medtronic StealthStation 
S7 Neuronavigation workstation (Medtronic, Minneapolis, MN) 
was used to view all relevant images and collect stereotactic 
coordinates.

Participants

A total of 13 consecutive patients underwent stereotactic 
electrode implantation for SEEG epilepsy monitoring in 2019, 
for a total of 136 electrode target coordinates. All patients gave 
informed consent prior to participation (IRB ID: HS-22-00195), 
and received preoperative magnetic resonance imaging (MRI) 
within 2 weeks before surgery which was used to plan the 
placement of each electrode. Computerized tomography (CT) 
imaging was performed after placement of the stereotactic 
frame and used for frame registration. Intraoperative 3D 
fluoroscopy was used after lead implantation to confirm 
final electrode locations. All patients were recruited from the 
hospital where the procedures were performed. 

Stereotactic Surgical Planning

All patients underwent preoperative thin-slice MRI (T1 with 
contrast, T2 and T2 fluid-attenuated inversion recovery without 
contrast, 1 mm slice thickness) as well as CT imaging without 

Figure 1: A) Commonly used drill (top), Cosman-Roberts-Wells (CRW) drill guide tube (middle), and Ad-tech drill sleeve guide (bottom) 
for insertion of Stereotactic electroencephalography (SEEG) electrodes. B) Drill minimally protruding beyond guide tube resulting in 
little drill flex. C) Drill protroding beyond the guide tube resulting in more drill flex. D) Ideal orthogonal approach angle. E) Oblique drill 
approach angle.
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placement is increasingly shifting towards robotic assistance, 
but many centers still use frame-based techniques (15). These 
procedures can be performed perpendicular to the tangent 
plane of the cranial surface (i.e., orthogonal approach) or at 
a non-perpendicular angle (i.e., oblique approach) (Figure 1). 
Ideally, stereotactic procedures are performed with orthogo-
nal insertions, as this approach is thought to be less prone 
to deflections caused by an angle between the drill and the 
skull surface (3,26). Historically, Talairach used the term “or-
thogonal” to refer to the relationship between the drill and the 
sagittal plane of the frame, and therefore the brain midline 
(25). However, in this study we use orthogonal to describe the 
angle between the drill and the cranial surface.

This study analyzes drill angular deflection in the axial, sagittal, 
and coronal planes after electrode insertion (Figure 2). While 
placement errors have the potential to cause complications, 
stereotactic procedures are well tolerated and demonstrate 
low morbidity rates, with vascular injury being of primary 
concern (9,10,22). Symptomatic intracerebral hemorrhage 
occurs in less than 1% of patients who undergo stereotactic 
electrode implantation (8,13,17,21,28). To maintain procedural 
safety, it is important to maximize the distance from cortical 
and intracortical vasculature while targeting the brain 
structures of interest. Not only is accuracy important in 
terms of safety, but precise electrode placement is critical to 
identifying epileptogenic activity through SEEG. 

The insular cortex and surrounding structures are commonly 
involved in epilepsy. Insulo-opercular epilepsy is best targeted 
using an orthogonal approach as this allows sampling of 
both cortices with one lead (2). However, if the epileptic 
activity is primarily of insular origin, an oblique approach will 
provide a larger sample of the insula (2,5). Afif et al. originally 
demonstrated the safety of oblique approaches for sampling 
the insular cortex in 2008 (1). Oblique trajectories with the 
Leksell frame have since been used to access the insular 
cortex in several centers using frontal (12) and/or parietal 
(14,27) approaches. There is still concern as to whether 
deviations from an orthogonal approach significantly affects 
electrode angle placement. This study aims to further classify 
the relationship between oblique approaches and angular 
deflection of the electrode, specifically determining whether 
greater divergences from the orthogonal approach (e.g., more 
than 30 degrees) are associated with larger deflections in 
electrode insertion angle. 
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contrast following anesthesia induction and stereotactic 
frame placement. The Cosman-Roberts-Wells (CRW) frame 
(Integra LifeSciences Corp., Burlington, Massachusetts) was 
used for all the patients. CT imaging was performed with the 
appropriate localizer device for each frame. The Medtronic 
StealthStation S7 Neuronavigation workstation with Cranial 
3.0 software (Medtronic, Fridley, MN) was used to create 
merged scans of preoperative MRI and postop CT images, 
which allowed us to identify stereotactic coordinates for each 
electrode. All targets were reviewed for consistency in all MRI 
sequences.

Electrode Placement and Intraoperative Imaging

A powered drill was used for opening of 2.4 mm holes in 
the skull and Ad-Tech (Ad-Tech Medical Instrumentation 
Corp, Oak Creek, WI USA) anchor bolts were used for SEEG 
lead implantation. Using the included stiffening stylet, each 
electrode was introduced through the anchor bolt until 
reaching target depth. Approach of the surgical target was 
facilitated with 2D visualization of the lead using C-Arm 
fluoroscopy. After all leads were implanted, intraoperative 3D 
fluoroscopy with the Medtronic (Medtronic, Dublin, Ireland) 
O2 O-arm was performed for 3D assessment of electrode 
placement accuracy.

Data Collection

Pre-operative planned angles were determined for each 
electrode in the axial, coronal, and sagittal planes. Post 
implant electrode angles in the axial, coronal, and sagittal 
planes were determined from post-operative CT scans. 

Analysis

Mean and standard deviation were reported for continuous 
variables. Linear regression was used for association between 
planned angle and actual angle in each plane. Mixed effects 
modeling was used to account for electrodes collected from 
the same patient. Bland-Altman plots were generated to 
explore the agreement between planned and actual angle 
within each plane. All analyses were performed using SAS 9.4 
(SAS Institute Inc., Cary, North Carolina).

█   RESULTS
Data was collected from a total of 13 patients and 136 
electrodes. A total of 92 electrode angles were measured in 
the axial plane, yielding a mean planned angle of 9.80 degrees 
with a standard deviation (SD) of 8.69 degrees, and a mean 
actual angle of 10.95 degrees (SD=9.88). 134 electrode angles 
were measured in the coronal plane, with a mean planned angle 
of 13.18 (SD=9.07) and a mean actual angle of 13.63 degrees 
(SD=10.34). 47 electrode angles were measured in the sagittal 
plane, with a mean planned angle of 11.21 degrees (SD=8.50) 
and a mean actual angle of 11.48 degrees (SD=9.35).

Qualitative assessment of correlation plots between the 
planned and actual angles demonstrated a linear relationship 
for axial, coronal, and sagittal planes (Figure 4). No deflection 
point was found wherein increased angular difference between 
planned and final electrode placement was noted. 

Figure 2: Depiction of a depth electrode with its corresponding 
angular measurements in the sagittal, axial, and coronal planes. 

Figure 3: Oblique electrode implantation viewed from the axial 
plane of the skull. An orthogonal electrode would ideally be 
inserted directly along the normal line, while the oblique electrode 
(blue dashed line) is implanted at an angle from the normal line. 
θ and ɸ represent the hypothetical planned and operative lead 
angles, respectively. In this example, the electrode deviated 
laterally from its planned angle of trajectory. 
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(Figure 4). Our results are therefore more in line with those 
of the robotic frameless studies by Ollivier et al. (23), and 
Rollo et al. (26), as outlined above. The lack of an increase in 
angular deflection calls into question the practice of favoring 
orthogonal over oblique electrode insertion. 

Orthogonal electrode insertion is effective, but in certain 
circumstances oblique angles provide the opportunity to reduce 
the total number of electrodes used. This feat is accomplished 
by aligning multiple neural target zones along the electrode 
trajectory in a manner that could not be accomplished via 
an orthogonal approach (3). These novel trajectories provide 
more diverse tissue sampling in epilepsy and offer additional 
routes to avoid vasculature. Implanting fewer electrodes 
via the oblique approach would reduce surgically related 
complications such as hemorrhage and infection (13,31). 
Therefore, proving the safety of oblique electrode insertions 
has the potential to improve both treatment efficacy and 
safety across various stereotactic neurosurgical procedures. 

While certain centers are transitioning to frameless robotic 
electrode implantation, many groups continue to employ the 
frame-based approach due to the lower cost of the procedure 
(15). This study supports the safety of the oblique approach 
for SEEG implantation with the CRW frame. Centers currently 
using the CRW frame may use the oblique approach to reduce 
the number of electrodes used, achieve more diverse tissue 
sampling, and decrease surgical complications.  

One drawback of oblique trajectories compared to orthogonal 
is the greater distance the electrode must travel to reach its 
destination. Traversing a larger amount of neural tissue causes 
more damage. It is also possible that, in certain scenarios, 
greater insertion depth with oblique trajectories could lead to 
a higher TPLE when compared with an orthogonal approach 
that reaches the target at a shorter distance (18). A recent 
study of 220 SEEG electrodes implanted in the insular cortex 
of 27 patients with both frame-based and robotic procedures 
found that there was no decrease in the accuracy of electrode 
placement when comparing the orthogonal approach to 
oblique approaches that required longer trajectories (20). 
However, as the difference in trajectory distance between 
oblique and orthogonal approaches will vary based on the 
target, further studies may be required.

A limitation of this study is the amount of the drill protruding 
beyond the end of the guide tube or drill sleeve guide is 
variable for each electrode location. The CRW frame has a 
fixed arc center radius of 160 mm and depending on how the 
patient is positioned in the frame, the location of the head 
that is being accessed, and the length of the guide tube, the 
amount of drill extending beyond the guide tube will vary for 
each electrode. In our patients, we consistently used the Ad-
tech drill sleeve guide which features a fixed length as per 
standard protocol. While the amount of exposed drill beyond 
the drill sleeve guide varied, it was not a variable that we were 
able to measure during postoperative data collection and 
analysis. The effects of the amount of exposed drill beyond 
the guide tube would be the subject of a potential future study.

█   DISCUSSION
In this study, we compared planned stereotactic electrode 
insertion angle with final operative insertion angle. We found 
that greater electrode insertion angles are not associated with 
greater angular deflection from the planned operative path. 
When the drill is oriented directly orthogonal to the skull, 
the tip of the drill will engage into the bone and center the 
spinning drill as it goes through the bone. However, if the drill 
approaches the bone at an angle, the center of the drill no 
longer engages the bone first, instead, the outer edges of the 
drill may “skive” along the bone and deflect and flex the drill 
bit. To counteract this, the drill bit is guided by a drill guide 
tube that resists the flexing of the drill bit as it is deflected on 
the surface of the skull (Figure 1). Depending upon the position 
of the frame and arc on the head and the region of the brain to 
be implanted, the amount of the drill protruding from the guide 
tube may vary. This is a limitation to using a stereotactic frame 
with a fixed arc center radius for placement of electrodes in 
the brain. Robotic approaches allow for approximation of the 
drill guide tube right up to the scalp to minimize the amount of 
exposed drill and reduce drill flexion.

Electrode placement errors can be defined as deviation 
from the desired insertion point on the skull (entry point 
localization error, EPLE) and departure from the intended final 
intracortical location (target point localization error, TPLE) 
(4,7,30). Cardinale et al. first analyzed the effect of a variety 
of explanatory variables on electrode placement in 2013 
and determined that factors such as drill bending and wider 
drill angles increased EPLE and TPLE (7). Oblique electrode 
trajectories were found to be less accurate than orthogonal 
trajectories using a stereotactic robot in a human cadaver 
study (18). Iordanou et al. found that robotically inserting 
electrodes at higher oblique angles led to increases in TPLE, 
and recommended that greater oblique angles, particularly 
over 30 degrees, should be avoided if possible (16). However, 
in 2020 Rollo et al. challenged the view that oblique angles 
should be avoided. Using robotically inserted electrodes, 
they found that greater oblique angles did not cause clinically 
significant increases in TPLE, as the vast majority were within 
3 mm of their planned destination (26). Ollivier et al. found no 
significant difference in EPLE and TPLE between orthogonal 
and oblique approaches with frameless robot assisted SEEG 
placement (23). Overall in the literature of insular cortex SEEG 
placement, TPLE differences between orthogonal and oblique 
approaches range from 0.5 to 1.5 mm (11).

Unlike manual CRW frame insertion, robotic electrode 
insertion brings the drill sleeve guide directly into contact with 
the patient’s skull. This reduction in distance between the 
skull and drill sleeve should lead to less variability in insertion 
angle. Considering our extensive use of CRW frame insertion, 
we expected to observe a rise in angular deflection with 
increasing electrode approach angles in a pattern even greater 
than would be predicted from Iordanou’s robotic procedure 
study (16). However, while there appeared to be more outliers 
in final operative angle at higher approach angles, qualitative 
assessment of measured versus planned angles did not show 
overt angular deflection for any magnitude of oblique insertion 
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Figure 4: The left column graphs display the relationship between the actual lead angle (y-axis) and the planned lead angle (x-axis) in 
the axial, coronal, and sagittal planes. The linear relationship between the planned and actual lead angles can clearly be seen in these 
graphs (black line y = x), and this relationship was maintained even at greater angles (e.g., more than 30 degrees) aside from a few 
outliers. The Bland-Altman plots (right column) further illustrate this point, as the data points are fairly evenly spread (black line y = 0) 
around an angle difference of zero between the planned and actual lead angles. 
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█   CONCLUSION
We aimed to determine if oblique approaches to electrode 
insertion are associated with greater deflections in electrode 
insertion angle, and if this association is magnified with 
increasing approach angles. The results indicate that wider 
oblique angles are not associated with greater deflections in 
electrode insertion angle. However, most neurosurgeons will 
still likely try to plan their trajectories as orthogonal to the skull 
as possible. One variable which could have increased the 
error of the electrode trajectory but was not examined in this 
paper is the amount of exposed drill from the drill guide tube. 
As more centers move towards implanting SEEG electrodes 
using robotic systems which allow for close placement of 
the drill guide tube near the scalp, this issue is likely to be 
even less prominent. Even without correcting for this factor, 
our findings demonstrate the safety and accuracy of oblique 
electrode insertion at increasing angles and validate its use in 
clinical practice.
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