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ABSTRACT

AIM: To assess anterior gradient protein 2 (AGR2) gene expression in patients with human glioblastoma (GBM) in comparison to
levels in healthy brain tissues.

MATERIAL and METHODS: We evaluated the expression levels of AGR2 gene in 34 tissue samples: 29 of them were derived
from patients with glioblastoma (GBM group) and 5 were derived from patients with mesial temporal lobe epilepsy (control group).
Moreover, in order to demonstrate the AGR2 gene expression, we performed RNA isolation from tissue samples, cDNA acquisition
from RNA via reverse transcription and the demonstration of gene expression via real-time polymerase chain reaction. We therefore
confirmed findings of both groups.

RESULTS: The mean age of the GBM and control groups were 53.1 + 12.82 years and 40.4 + 10.92 years respectively. AGR2 gene
expression levels of the GBM group were significantly higher than those of the control group (p<0.01). There were no significant
differences of AGR2 gene expression levels across age groups, levels of glucose, urea, creatinine, white blood cell count (WBC),
neutrophil, lymphocyte, hemoglobin, platelet, thyroid-stimulating hormone (TSH), T3 and T4 in GBM group (p>0.05).

CONCLUSION: AGR2 gene expression was significantly higher in patients with GBM. Thus, AGR2 gene can be considered as a
potential therapeutic target.
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B INTRODUCTION ment previously, addition of the temozolomide (TMZ) to RT
. . . caused better median survival (12.1 months for RT alone and
lioblastoma (GBM) is the most common .mallgnant 14.6 months for TMZ plus RT) (40). Despite these treatment
tumor of the central nervous system. Despite the ex- options, the prognoses of patients are not satisfactory. Con-

igtenge of muItimodaI'treatment optioons, it has poor sidering the complex pathogenesis of GBM, cellular pathways
prognosis with a 5-year survival rate of 5.5% (29). The sur- such as tyrosine kinase and signal transduction inhibitors or

gical resection of GBM is not curatlvg dge to presence of the immunotherapy by the usage of monoclonal antibodies and
tumoral cells beyond the macroscopic view, leading to recur- vaccines has gained much attention (4). Thus, potential thera-

rence or progression, within the perilesional brain tissue (43). peutic targets for the treatment of GBM are in view.
Although radiotherapy (RT) after surgery was standard treat-
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Anterior gradient protein 2 (AGR2) is the human orthologue
of the Xenopus laevis protein XAG-2 (5). In Xenopus, AGR2
induces cement gland differentiation (1). In humans, AGR2
is a protein disulfide isomerase (10) and functions in protein
binding (12). Moreover, it is strongly expressed in tissues with
great secretory functions such as the lung, stomach, intestine
and prostate (39). High expression of the AGR2 gene is
associated with some cancers (20,35). However, very limited
publications in the literature demonstrates the relationship
between AGR2 gene and GBM, and all were based on cell
culture. Thus, we investigated the AGR2 gene expression in
the real human GBM tissues which has not been published
previously, in order to enhance reliability.

B MATERIAL and METHODS

This prospective study was performed in collaboration with
the Department of Neurosurgery, Istanbul Haseki Training
and Research Hospital; the Departments of Medical Genetics
and Biochemistry of Balikesir University Medical Faculty. We
included patients with a Grade 4-World Health Organization
(WHO) GBM in this study. The patients along with their relatives
signed a standard consent form after debriefing of its content.
The Ethical Committee of Balikesir University Medical Faculty
approved the study design with the registration number
94025189-050.03-10362 on 02/03/2018. All procedures were
consistent with the Declaration of Helsinki.

Patient Population and Sample Collecting

From May 2018 to February 2021, we included 29 patients
with pathologically confirmed GBM who needed surgical in-
tervention. We excluded patients with additional malignan-
cies, severe systemic or metabolic disease, infectious condi-
tions and recent surgical history. Moreover, we did not include
patients who refused participating in the study.

Healthy brain parenchyma tissues were used as control group
to compare expression levels of AGR2 in GBM samples.
For this purpose, five patients who underwent an anterior
temporal lobectomy and amygdalophippocampectomy due
to mesial temporal lobe epilepsy were constituted our control
group after applying the exclusion criteria.

Among the 34 tissue samples collected, 29 were derived from
patients with GBM and 5 from control patient. All samples
were stored in dry tubes at —-80° C before RNA isolation.

RNA Isolation from Tissue Samples

RNA isolation from frozen tumor and control tissues was
achieved using the TRIzol reagent (Invitrogen, San Diego, CA)
according to the manufacturer’s protocol. Quality (purities and
concentrations) of isolated RNA was measured using Nano-
Drop ND-2000c (Thermo Fisher Scientific, Inc., Wilmington,
DE). All extracted RNAs were stored at —80°C till cDNA syn-
thesis.

cDNA Synthesis and Quantitive Real-Time PCR

Reverse transcription of the RNA samples was performed us-
ing the TagMan™ Reverse Transcription Reagents kit (Ther-
mo Fisher Scientific, Waltham, MA, USA) according to the
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manufacturer’s instructions. The relative expression levels of
AGR2 were measured through quantitative reverse transcrip-
tion polymerase chain reaction (QRT-PCR) using the TAQMAN
probe (AGR2 probe Hs00356521, ACTB Hs 99999903, Ther-
mo Fisher Scientific, Waltham, MA, USA) in Applied Biosyste-
ms™ 7500 Real-Time PCR device.

All reactions were performed in triplicate and data were
analyzed through normalization with B2M (3-2 Microglobulin)
housekeeping gene. The relative quantification analysis was
performed using the “delta-deltaCt” method (22).

Statistical Analyses

NCSS (Number Cruncher Statistical System) (Kaysville, Utah,
USA) program was employed for overall statistical analysis.
We described the variables by presenting their mean, standard
deviation, frequency, percentage, minimum, and maximum
values. Shapiro Wilk test and box plot graphs were used to
test the distribution of variables. Kruskal Wallis and Mann
Whitney U tests were used for the intergroup comparisons of
parameters that were non-normally-distributed. Spearman’s
correlation analysis was used to evaluate the relationships
between variables. Statistical significance was set at p<0.05.

B RESULTS
Demographic and Clinical Data

The GBM group comprised of 14 (48.3%) women and 15
(51.7%) men with a mean age of 53.1 + 12.82 years ranging
from 18 to 82 years. The control group consisted of 2 (40%)
women and 3 (60%) men with a mean age of 40.4 + 10.92
years ranging from 24 to 51 years.

In the GBM group, 16 (55.2%) patients experienced head-
aches, 7 (24.1%) experienced seizures and 6 (20.7%) expe-
rienced a paresis in the first admission. Moreover, 11 (37.9%)
tumors were located in the frontal lobe, 11 (37.9%) in the tem-
poral lobe, 6 (20.7%) in the parietal lobe and 1 (3.5%) in the
occipital lobe.

In the GBM group, the mean of blood glucose level was
135.07 + 52.49 mg/dL (range: 84-342 mg/dl), urea level was
37.66 + 14.62 mg/dL (range: 12-79 mg/dL), creatinine level
was 0.78 + 0.18 mg/dL (range: 0.51-1.22). In complete blood
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Figure 1: Polymerase chain reactions of control f2-microglobulin
and synthesized cDNAs.



count, the mean WBC was 9.91 + 10.94 x 10%/uL (range: 4.57-
59.81 x 10%/uL), neutrophil was 64.14 + 18.63 x 10%/uL (range:
16.6-93.0 x 10%/uL), lymphocyte was 24.69 + 13.33 x 10%/uL
(range: 5.78-60.70 x 10%/uL), platelet was 264.25 + 86.45 x
10%/uL (range: 145.4-539.0 x 10%/uL), hemoglobin was 13.08
+2.23 g/dL (range: 7.69-16.90 x 10%/uL).

The mean levels of thyroid-stimulating hormone (TSH),
triiodothyronine (T3) and thyroxine (T4) levels were 1.39 =+
1.60 mU/L (range: 0.46-1.42 mU/L), 3.04 + 1.04 ng/L (range:
2.56-3.48 ng/L) and 1.21 + 0.21 ng/L (range: 1.05-1.35 ng/L)
respectively. There was coexistent diabetes mellitus (DM) in 6
(20.7%) patients and hypertension (HT) in 8 (27.6%) patients.
Though a history of smoking was observed in 8 (27.6%)
patients, no patient consumed alcohol (Table I).

The mean of the AGR2 gene expression of the patient group
(determined by accepting the mean of the control group as
1), was 13.86 + 15.85 (range: 0.01-63.7). The GBM group
expressed significantly higher mean AGR2 gene levels than
the control group (p<0.01) (Table II).

There was no significant difference of the AGR2 gene expression
across age groups, levels of glucose, urea, creatinine, WBC,
neutrophil, lymphocyte, hemoglobin, platelet, TSH, T3, and T4
in the GBM group (p>0.05) (Table IlI).

AGR2 gene expression levels were separately compared with
sex, localization, coexistent DM or HT and smoking history.
Each of these comparisons yielded differences in AGR2 gene
expression that was not significant (p>0.05) (Table 1V).

B DISCUSSION

Despite recent advances in neurosurgery in recent decades,
the prognosis of the GBM is still poor. Despite multimodal
treatments including surgery, radiotherapy and chemotherapy,
the median survival of patients with GBM is less than 2
years (28). At this point, molecular investigations, focusing
on various mechanisms such as angiogenesis or tumor
suppressor genes of primary interest both to researchers and
clinicians in this field.

GBM expresses angiogenesis, which is mostly regulated by
hypoxia inducible factor-1 (HIF-1) (9). This explains why anti-
angiogenic treatment has become an option for GBM owing
to its considerably high expression of vascular endothelial
growth factor (VEGF) and endothelial cell proliferation (24).
Despite these theoretically rational anti-angiogenic treatments,
there is no demonstrated agent in the treatment of GBM with
promising survival owing to existing resistance mechanisms
(38). Hong et al. investigated the AGR2 expression and its
relationship with hypoxia and how angiogenesis caused
tumor progression in GBM cell lines (14). Firstly, they found
out that AGR-2 and HIF-1a levels were elevated and induced
by hypoxia. They investigated the effect of HIF-1a on the
expression of AGR-2. When HIF-1a was knocked down by
transfection of HIF-1a siRNA and CoCl, (a hypoxia-mimetic
agent) was added into the milieu; elevated AGR2 response
was not observed. As a result, they concluded that AGR2
expression is regulated by HIF-1a. Lastly, the effects of
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Table I: Clinical Data of GBM Patients

Min-Max (median) Mean = SD
Age (years) 18-82 (53) 53.1 £12.82
AGR2 expression levels  0.01-63.753 (8.4) 13.86 + 15.85
Glucose (mg/dl) 84-342 (119) 135.07 + 52.49
Urea (mg/dl) 12-79 (36) 37.66 + 14.62
Creatinine (mg/dl) 0.51-1.22 (0.73) 0.78 +0.18
WBC (10%/ul) 4.57-59.81 (8.44) 10.94 + 9.91
Neutrophil (10%/pl) 16.6-93 (60.45) 64.14 + 18.63
Lymphocyte (10%/pl) 5.78-60.7 (22.515) 24.69 + 13.33
Haemoglobin (g/dl) 7.69-16.9 (13.13) 13.08 + 2.23

Platelet (10%/pl) 145.4-539 (264.2) 264.25 + 86.45
T3 (ng/l) 2.56-3.48 (3.06)  3.04 + 1.04
T4 (ng/l) 1.05-1.35(1.19)  1.21 + 0.21
TSH (mU/l) 0.46-1.42 (0.68) 1.39 + 1.60
n %

Sex

Female 14 48.3

Male 15 51.7
Localization

Frontal 11 37.9

Occipital 1 3.5

Parietal 6 20.7

Temporal 11 37.9
Diabetes Mellitus

() 23 79.3

(+) 6 20.7
Hypertension

() 21 72.4

(+) 8 27.6
Smoking

) 21 72.4

(+) 8 27.6
Alcohol consumption

) 29 100

®) - -
SD: Standard deviation.
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Table Il: AGR2 Gene Expressions of GBM and Control Groups

AGR2
n
Min-Max (Median) Mean + SD p
GBM 29 0.01-63.7 (8.4) 13.86 + 15.85 20.005**
Group
Control 5 1-1 (1) 10

aMann Whitney U test, **p<0.01 sd: Standard deviation.

Table Ill: The Comparison of AGR2 Gene Expression and Other
Parameters in GBM Group

AGR2
r P
Age (years) 0.032 0.870
Glucose (mg/dl) -0.241 0.209
Urea (mg/dl) -0.047 0.809
Creatinine (mg/dl) 0.205 0.286
WBC (10%/ul) -0.059 0.760
Neutrophil (10%/pl) -0.129 0.513
Lymphocyte (10%/pl) 0.026 0.894
Haemoglobin (g/dl) -0.029 0.883
Platelet (10%/pl) -0.017 0.933
TSH (mU/l) 0.111 0.565
T3 (ng/l) 0.259 0.175
T4 (ng/l) -0.102 0.606

r: Spearman’s correlation coefficient sd: standard deviation.

AGR2 on the migration and formation of human umbilical
vein endothelial cells were evaluated; a correlation was found
with AGR2 expression for both parameters. When all findings
were analyzed, they concluded that the AGR2 is induced by
hypoxia and has effects on tumor growth and angiogenesis.
Thus, AGR2 could be considered as a new target for anti-
angiogenic therapy. Similarly, in our study, the expression
of AGR2 gene in patients with GBM was higher than that of
normal glial control samples. Moreover, our findings could be
more congruent as our study was the first real tumoral tissue-
based study instead of cell culture.

Although the involvement of the Chemokine (C-X-C motif)
Receptor 4 (CXCR4) pathway in GBM has been described
(8,23); stromal cell derived factor-1 (SDF-1)-CXCR4 pathway,
which has important role in the tumorigenesis of various
cancers (7,41), was first investigated by Xu et al. for GBM
(45). SDF-1 induced the expression of AGR2 and epithelial
mesenchymal transition (EMT) markers in GBM cell lines.
While the depletion of AGR2 supresses the SDF-1-induced
upregulation of EMT markers; the knockdown of AGR2 led to
cell cycle arrest in GO/G1, attenuated migration and invasion

Table IV: Assessment of AGR2 Gene Expression in Different Patient Subgroups

AGR2 .
n Mean + SD Median P
Sex 0.930
Female 14 10.52 + 7.63 7.71
Male 15 16.98 + 20.67 8.54
Localization ®0.917
Frontal 11 14.5 + 18.89 5.28
Occipital 1 10.63+0 10.63
Parietal 6 15.21 + 13.25 12.4
Temporal 11 12.79 £ 15.99 8.38
DM 0.389
(=) 23 15.26 + 17.03 8.54
(+) 6 8.52 + 9.38 6.98
HT 0.696
(=) 21 14.87 +17.35 7.05
(+) 8 11.23+11.6 8.46
Smoking 0.922
) 21 12.5 + 13.67 8.38
(+) 8 17.46 £ 21.25 9.89

aMann Whitney U test, *Kruskal Wallis test, DM: Diabetes mellitus, HT: Hypertension, SD: Standard deviation.
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of cell lines. They concluded that AGR2-targeted therapy is a
promising option. In our current study, the higher expression
of AGR2 has been demonstrated in real human tumor samples
but the further mechanisms of its pathway such as SDF-1-
CXCR4 need to be investigated for better understanding and
knowledge of treatment targets.

Alterations of tumor suppressor p53 gene are linked to
more progression (17), proliferation (8), invasion (6), and less
apoptosis (32), in the pathogenesis of GBM. This is not linked
with poor prognosis unlike other cancers (33). The interaction
between AGR2 and p53 has been investigated by Pohler et al.
in Barret’s epithelium which is a premalignant tissue (34). They
reported that the Barret’s epithelium overexpresses AGR2,
causing an attenuation on tumor suppressor p53. Regarding
the recent advances in p53 as new therapeutic targets
in cancers including GBM (25), exploring the relationship
between AGR2 gene expression and p53 mutations could be
of great value in the treatment of GBM. Although our current
study is the first report of overexpressed AGR2 gene in real
GBM tissues, further studies exploring other pathways are
recommended.

P38 mitogen-activated protein kinase (MAPK) creates a
balance between cell death and survival (36,47). The activation
of p88 MAPK pathway leads to TNF-a-induced apoptosis
in glioma cells (49). Moreover, p38 MAPK pathway causes
autophagy inhibition and TMZ induced GBM cell death (48).
Thus, various molecules such as hesperetin (18) or Sweroside
(80) are considered antitumoral agents the modulation of the
p38 MAPK pathway in the treatment of GBM. Although the
p38 MAPK pathway and p53 are possible targets for GBM,
Hrstka et al. showed that the AGR2 oncoprotein had similar
effects as p38 MAPK inhibitor and p53 (15). They concluded
that the AGR2 is a prognostic marker and molecular target for
breast cancers. Considering that AGR2 has not been explored
in GBM, unlike in breast cancer, our study elucidates on the
already-known mechanisms.

Although there is no clinical utility of AGR2 as a target molecule
for GBM, promising studies, many studies have contradicted
this in recent years. Negi et al. investigated the effects of anti-
AGR2 monoclonal antibody, mAb18A4, in the mice xenograft
model for lung cancer (26). They reported that mAb18A4
inhibited lung cancer progression and metastasis with no
major side effects on blood or organs. Moreover, inhibited
proliferation and colony formation were demonstrated in the
mAb18A4-treated cell lines to enhance p53 expression and
apoptosis. In addition, this treatment resulted in reduced
VEGF expression and neovascularization, thereby inhibiting
AGR2-induced angiogenesis and angiogenesis-dependent
metastasis. VEGF is one of the most important angiogenesis
mediator of GBM and various strategies have been investigated
to target VEGF or VEGF receptor-mediated angiogenesis (42),
AGR2 could be considered as a novel target with its directly or
angiogenesis-related involvement in GBM.

Liu et al. investigated the involvement of the microRNA-
3647-5p (MiRNA-3647-5p) in cervical cancer cell lines (21).
They used the reverse transcription quantitative polymerase
chain reaction (RT-gPCR) to modulate various genes
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and transcription factors. They concluded that the TP53
upregulates the miR-3647-5p and restrain the progression of
cervical carcinoma via AGR2 inhibition. They also indicated
this TP53/miR-3647-5p/AGR2 axis can be a new target for
treatment of cervical cancer because of its apoptotic and
antiproliferative effects. Considering the many GBM related
miRNAs have been reported in the current literature (37) and
the p53 is a well-known tumor suppressor gene, investigating
the further pathways, and the role of AGR2 in these; can
be beneficial for clinical usage of AGR2 as a diagnostic or
therapeutic target.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an ubiquitous
environmental pollutant and classified as a group 1 human
carcinogen according to the International Agency for
Research on Cancer (16). The aryl hydrocarbon receptor (AhR)
is involved in the fulfilment of various effects of TCDD (11).
Moreover, the TCDD causing attenuation of p53 response
to DNA-damaging agents in hepatocellular carcinoma
(HCC) cell lines was previously reported (31). In this respect
Ambolet-Camoit et al. hypothesized the relation between
p53 and TCDD/AhR pathways could be controlled by an AhR
target gene (2); and selected the AGR2 as the novel gene
because of its overexpression leads to attenuation of p53
serine phosphorylation (34). They suggested that the TCDD
treatment induces the binding of the AhR to the endogenous
AGR2 promoter, and concluded the AhR ligands such as
TCDD might promote tumor progression via inhibition of
p53 response, which is induced by genotoxicants, by the
increased expression of AGR2 in HCC cell lines. Considering
the environmental chemicals such as carbon tetrachloride
create risk of GBM development (27), the overexpression of
the AGR2 may have significant roles in the GBM formation
or progression, which can ease by external factors, and the
further studies are needed to understand these pathways.

Higher expression of highly upregulated in liver cancer
(HULC), a long non-coding RNA (IncRNA), has been reported
in glioma cells (46). Also, it is associated proliferation and
colony formation capability of glioma cells. However, Zhu et
al. suggested that the HULC had pro-angiogenic activity in
glioma cells (50). Additionally, recent studies demonstrated
the presence of an interaction between HULC and forkhead
box M1 (FOXM1) in cancer development and progression
(13,44). Li et al. hypothesized that HULC is involved in FOXM1/
AGR2/HIF-1a regulatory axis and related with glycolysis and
stemness of glioma cell lines (19). Their findings indicated
that HULC promotes the FOXM1 protein by ubiquitination,
resulting in upregulation of AGR2 and HIF-1a. Knocking down
HULC resulted in the inhibition of stemness and proliferation
of glioma stem cells. They concluded that HULC stabilizes the
FOXM1 expression and activation of FOXM1/AGR2/HIF-1a
axis, thus promoting glycolysis and stemness of the glioma
stem cells. Similarly, in our current issue, AGR2 expression
has been found higher than normal brain tissues. Thus, the
relationship between expression levels of various oncogenes
or IncRNAs with AGR2 can be investigated in further studies
to understand the exact mechanism. This is useful in the
treatment of glioblastoma, which is not still curable in clinical
practice.
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Limitations

We encountered two main limitations in this study. Firstly, the
sample size was restricted for certain inferences. Secondly,
the relationship between AGR2 gene expression and glioma
staging could not be demonstrated as all tumors were WHO
grade 4. Further studies with wider patient groups including
different grades of gliomas are highly recommended.

B CONCLUSION

Our study is the first real human tissue-based study that
investigates the expression of AGR2 gene in patients with
GBM. Considering the insufficiency of current therapies for
GBM, it is clear that the alternative treatment methods are
necessary and can be achieved by further understanding
of their underlying mechanisms. Molecular-based therapy
gained attention in cancer research. Thus, AGR2 gene can
be considered as a novel potential target for the treatment
of GBM. Further studies are recommended to enhance
knowledge on the mechanisms underlying AGR2 gene in the
treatment of patients with GBM.
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