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ABSTRACT

focuses on creating algorithms that allow computers to learn 
from data. Its ability to perform comprehensive analyses even 
with massive amounts of non-linear data makes it favorable in 
medical decision-making. There are different types of learning 
and different mathematical algorithms applied in ML. 

Principally, there are two types of learning; supervised and 
unsupervised learning. In supervised learning, the aim is 
to predict the output. In order to achieve the capability of 
prediction, ML requires a training period, when all inputs and 
their readily available outputs must be registered. Following 
the training, the algorithm should be tested to observe the 
quality of predictions. In this step, the researcher inspects 
if the predictions of the computer are as accurate as known 
outputs. If the algorithm performs with a good percentage of 
correct predictions, it can be employed for making predictions 
where outputs are not known. For example; in order to build an 
ML algorithm which will perform predictions on lumbar spine 
surgery, pre-surgical clinical data and post-surgical outcome 
data of patients must be registered as the first step. Then, 
the researcher must test the algorithm if predictions are in line 

█    INTRODUCTION

Current decision-making process in neurosurgery is 
based on clinical practice guidelines that cite wide 
sample clinical trials and case series publications. 

Common statistical methods are utilized in the majority of 
these publications such as; t-test, cox-hazard model and chi-
square test which are also well-known to the neurosurgeons. 
Statistical tests calculate the correlation between variables and 
require assumptions as in determining level of significance, 
e.g. setting a p-value. Also, the presence of a correlation 
between variables does not always prove a causation (2). 
Most of the statistical tests have some kind limitations such 
as being unable to analyze non-linear variables or difficulty in 
finding correlations when data sets are massive.

In the past decades, machine learning (ML) has been proposed 
as a novel computational data analysis method in order to 
overcome the limitations of traditional scientific statistical 
methods and has become increasingly popular amongst 
medical sciences. ML is a subfield of computer science, and 

Current practice of neurosurgery depends on clinical practice guidelines and evidence-based research publications that derive 
results using statistical methods. However, statistical analysis methods have some limitations such as the inability to analyze non-
linear variables, requiring setting a level of significance, being impractical for analyzing large amounts of data and the possibility of 
human bias. Machine learning is an emerging method for analyzing massive amounts of complex data which relies on algorithms 
that allow computers to learn and make accurate predictions. During the past decade, machine learning has been increasingly 
implemented in medical research as well as neurosurgical publications. This systematical review aimed to assemble the current 
neurosurgical literature that machine learning has been utilized, and to inform neurosurgeons on this novel method of data analysis.       
KEYWORDS: Bayesian network, Logistic regression analysis, Machine learning, Neural network, Neurosurgery, Support vector 
machine



168 | Turk Neurosurg 28(2):167-173, 2018

Celtikci E.: Machine Learning in Neurosurgery

with real patient outcomes. Provided that the predictions are 
satisfactory, the algorithm can be utilized to predict unknown 
outcomes. In unsupervised learning, the aim is to predict certain 
patterns in the data rather than an outcome. Pattern analysis 
is implemented especially for defining pathophysiological 
mechanisms of diseases. For example; defining the relation 
patterns between variables such as imaging characteristics, 
molecular markers, performance score and amount of cerebral 
edema in glioma patients requires an unsupervised learning 
process where predicting an outcome is not the ultimate goal.

As mentioned earlier, different mathematical algorithms have 
been defined for ML. In logistic regression, inputs and outputs 
come additively and linearly. However, once established, this 
method does not allow further addition of alternative variables 
into the analysis. Decision tree allows performing predictions 
from different variables even if they are not occurring together. 
For example, a patient with a motor deficit can have a cerebral 
mass or subdural hematoma or spinal burst fracture or a 
herniated disc or a non-neurosurgical condition. Decision tree 
analysis reveals any possible correlation between these clinical 
entities. Neural networks have the flexibility of changing input 
features and adding new types of inputs during data collection. 
Bayesian networks can predict conditional dependencies 
of random variables. When symptoms are provided, this 
algorithm can calculate the probability of various diseases in 
a subject. Linear discriminant analysis aims to find a linear 
combination of variables that characterizes or classifies two or 
more types of objects or events. For example, by using inputs 
as magnetic resonance imaging (MRI) scans, this algorithm 
can perform automatized diagnosis of brain tumors. Support 
vector machines are supervised models that require a set of 
training data, and have the flexibility of using inputs either the 
data is linear or non-linear. Support vector machines recently 
demonstrated the capability of analyzing massive amount of 
diverse data, e.g., predicting prognosis of stroke patients by 
analyzing diffusion MRI scans (14). 

Recently, ML related studies are progressively increasing in 
the literature due to its advanced data analyzing capabilities. 
The aim of this systematical review is to compile the current 
neurosurgical literature that utilized different ML techniques, 
and to provide neurosurgeons with an up-to-date overview of 
this emerging data analysis method.

█    MATERIAL and METHODS 

‘Guidelines of Preferred Reporting Items for Systematic 
Reviews and Meta-analyses: the PRISMA Statement’ was 
followed while performing this systematic review (37). MED-
LINE, and the Cochrane Database of Systematic Reviews 
was queried using combinations of the following keywords: 
neurosurgery, machine learning, glioma, spine, skull base, 
prediction, support vector machine, Bayesian network, deci-
sion tree, data mining, neural network. Articles in English 
language, published from 1 January 1900 to 30 January 2017 
were evaluated. 

Studies were screened by title and abstract in order to identify 
relevant articles. Inclusion criteria were; studies that utilized 

ML 1) in preoperative planning, 2) in predicting outcomes of 
either interventions or diseases.  Flowchart of article selection 
is illustrated in Figure 1. Studies 1) that are not related to ML 
algorithms or neurological sciences, 2) concerning psychiatry, 
radiology, neurology or specialties other than neurosurgery, 3) 
on human computer interface, 4) written in a language other 
than English, 5) with no available full-text were excluded. 
Also, animal studies, reviews, conference papers, poster 
presentations, editorials, letters to editor were not included. 
Full-texts of all included articles were retrieved for further 
analysis. References of all included full-text articles were 
reviewed to find any related manuscripts.

█    RESULTS
Literature Search 

Following elimination of duplicates, a total of 9098 citations 
were identified. Following exclusion, 37 full-text articles were 
examined, and consequently 7 articles were excluded due to 
unrelated study aim. Five of the excluded studies were focused 
on automatized tumor detection or anatomical structure 
segmentation, whereas 2 studies were about automatized 
prediction of pathological or genetic characteristics without 
considering outcome or survival. After checking references and 
related articles of full-text articles, 21 additional articles were 
found eligible and included into systematic review. Included 
studies were classified according to topics; hydrocephalus, 
deep brain stimulation, neurovascular, epilepsy, glioma, 
radiosurgery, spine, traumatic brain injury. Remaining topics 
were summarized under ‘other’. Distributions of studies by 
topics were summarized in Table I.

Algorithms

Amongst 51 studies, following algorithms were identified; 
neural network (n=17), Bayesian network (n=11), support vector 
machine (n=16), decision tree (n=5), logistic regression (n=12) 
and discriminant analysis (n=2). Six studies had employed 
more than one ML algorithm. Most common algorithms were 
neural network (27%) and support vector machine (25%).

Hydrocephalus

There were 2 studies on hydrocephalus. Azimi and Mohammadi 
used neural network analysis for evaluating endoscopic third 
ventriculostomy (ETV) success in childhood hydrocephalus 
(6). Habibi et al. also used neural network analysis to predict 
the risk of ventriculoperitoneal shunt infection in children with 
hydrocephalus (23). 

Deep Brain Stimulation

There were 6 studies that utilized ML algorithms in deep brain 
stimulation studies. The majority of these studies focused on 
automatized localization of the subthalamic nucleus (STN). Two 
studies used Bayesian network algorithms for STN targeting 
(38,52). In the study of Rajpurohit et al., logistic regression 
was employed to define STN (45), and Wong et al. applied 
an unsupervised ML technique in order to localize STN (53). 
Baumgarten et al. used neural network analysis to predict any 
pyramidal tract side effects during deep brain stimulation (8). 
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In an investigation by Muniz et al., three different techniques 
of ML; neural network analysis, support vector machine and 
logistic regression analysis were employed in order to evaluate 
the effect of STN stimulation on ground reaction force during 
gait (39).

Neurovascular

There were 6 studies that applied ML techniques in analysis 
of neurovascular pathologies. The study of Asadi et al. 
investigated the outcome of arteriovenous malformations 
(AVMs) following endovascular treatment (4). In the separate 
studies of Dumont (16) and Dumont et al. (17), the authors 
tried the same algorithm, which is a neural network 
model, on different patient populations to predict cerebral 
vasospasm. In the study of Lo et al. authors combined 
two ML methods; neural networks with Bayesian network 

algorithms, to predict clinical outcome of patients following 
aneurysmal subarachnoid hemorrhage (SAH) (31). One other 
study employed decision tree analysis to reveal factors that 
increase the risk of developing aggressive behavior in dural 
arteriovenous fistulas. They reported the presence of cortical 
venous drainage as the main risk factor (48).

Epilepsy 

In the literature, there were numerous studies that utilized ML 
methods in the field of epilepsy. Also, there were related studies 
that applied ML techniques to analyze data achieved from 
electroencephalography recordings, intraoperative surface 
electrode recordings or intracortical electrode recordings, in 
order to define neural activity signal patterns of language, 
seizure and face recognition. Six publications were identified 
as neurosurgical. Three of them were epilepsy surgery 

Figure 1: Flow-chart showing selection of relevant articles.
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radiosurgery for brain metastases (10,29,43). Oermann et al. 
used ML to predict patient outcomes of AVM radiosurgery 
(43). Another study implemented ML methods to predict the 
risk of hydrocephalus following gamma knife radiosurgery for 
intracranial schwannoma (30).

Spine

There were 7 studies identified, with 6 of them investigated 
prediction of spinal surgical outcomes via ML (5,7,22,24,34,35). 
One study applied support vector machine to predict the risk 
of progression in adolescent idiopathic scoliosis patients (1).

Traumatic Brain Injury

Publications on traumatic brain injury that used ML techniques 
had the greatest number of publications (n=11) with wider 
sample sizes compared to other topics in this review. These 
studies employed various ML algorithms such as neural 
networks, logistic regression model, support vector machine 

outcome prediction studies (3,9,36). Cohen et al. tested if ML 
method can identify surgery candidates among intractable 
temporal lobe epilepsy patients as well as physicians (11). The 
remaining studies investigated pre-operative identification of 
the epileptic focus (15), and language dominance (21).

Glioma

Five studies implemented ML techniques, and 4 of them 
investigated factors affecting survival in glioma patients 
(19,32,33,56). One study employed an ML algorithm in order 
to identify in which patients intraoperative MRI should be used 
(50). The ML algorithm was given a combined data of surgeon’s 
preoperative opinions and patient’s clinical characteristics to 
make the decision.

Radiosurgery

Five studies were identified with 3 of them using ML algorithms 
to predict survival in patients that underwent stereotactic 

Table I: Distribution of Studies Included in Systematic Review According to Topics

Topic Aim of study Number of Studies

Hydrocephalus Surgical outcome prediction 2

Deep brain stimulation
Surgical outcome prediction 2

STN localization 4

Neurovascular

Endovascular treatment outcome prediction 1

Vasospasm following SAH prediction 2

Clinical outcome prediction 1

Prediction of developing aggressive DAVF behavior 1

Epilepsy

Surgery candidate prediction 1

Identification of epileptogenic zone for surgery 1

Pre-operative identification of language dominance 1

Surgical outcome prediction 3

Glioma
Survival prediction 4

Pre-operative prediction of intraoperative MRI use 1

Radiosurgery

Survival prediction of intracranial metastatic disease 3
Prediction of hydrocephalus development following radiosurgery for 

schwannoma 1

Outcome prediction of AVM radiosurgery 1

Spine
Predicting risk of progression adolescent idiopathic scoliosis 1

Surgical outcome prediction 6*

Traumatic Brain Injury Outcome prediction 10

Other
Outcome prediction after Chiari malformation surgery 1

ICP prediction from intracranial pressure signal morphology 4

* Two studies out of 6 were about cervical spine, whereas 4 studies were on lumbar spine.
AVM: Arteriovenous malformation, DAVF: Dural arteriovenous fistula, ICP: Intracranial pressure, MRI: Magnetic resonance imaging,                                  
SAH: Subarachnoid hemorrhage, STN: Subthalamic nucleus.
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authors retrospectively analyzed 507 patients with intracranial 
metastases that were treated with radiosurgery in order to 
determine predictive factors of overall survival. Previously, 
multiple studies had suggested that the number of metastases 
(>4) is predictive for overall survival (1,9,24,25,35). However, 
the ML technique they employed revealed that performance 
status and systemic disease status of patients were predictive 
for overall survival, not the number of intracranial metastases 
(29). Asadi et al. retrospectively analyzed records of 199 AVM 
patients and utilized a supervised ML method (Levenberg–
Marquardt algorithm). They reported that ML predicted 
patient outcome with an accuracy of 97.5% and identified the 
presence or absence of nidal fistulae as the most important 
factor (4).

This systematic review only included studies on prediction of 
patient outcome and survival or pre-operative planning. Also, 
there are other neurosurgery related studies that implemented 
ML and were not included in this review. Radiogenomics 
studies investigate automatized MRI-based diagnosis of 
gliomas by establishing the correlation between genetic 
properties and imaging characteristics of the tumor (28,46,54). 
Human-computer interface studies like the publication of 
Collinger et al. is another example, which demonstrated the 
possibility of a neuroprosthetic arm controlled by intracortical 
microelectrode implants in the motor cortex (12). In their study, 
ML algorithms were not used for predicting any outcome, but 
employed in order to analyze the complex data acquired from 
motor cortex recordings.

█    CONCLUSION
ML provides accurate and fast interpretation of complex data 
in large amounts, overcoming possible human error and/or 
bias. This progressively developing method has the ability to 
learn and gain experience, and would continue to increase 
its success in accurate decision-making in the future. Wider 
application of ML in the medical and neurosurgical studies 
might improve clinical and surgical management, ultimately 
the quality of patient care and outcome.
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