The Management in the C2-C3 Disc Herniations: A Clinical Study

ABSTRACT

AIM: Cervical disc herniation at C2-C3 level is an uncommon condition. In this paper, the management of C2-C3 disc herniation and long-term follow-up data of 5 cases is reported.

MATERIAL and METHODS: 1100 patients who have been operated in our department for cervical disc herniation between 2000 and 2009 were studied retrospectively. A total of 5 patients were found to have been operated for C2-C3 herniation in that period. The preferred procedure was anterior cervical discectomy with fusion via retropharyngeal approach.

RESULTS: The incidence of C2-C3 disc herniations was 0.45%. The mean patient age was 63 years (41-82 years). Upper extremity paresis was the predominant neurological sign. Magnetic resonance images (MRI) revealed central, large and hard disc herniations in 4 cases and accompanying cord signal changes in 4 cases. Successful anterior decompression was performed in 5 patients. Correct fusion was achieved in 4 patients, and one patient died of an operation unrelated cause early in the follow-up period.

CONCLUSION: C2-C3 disc herniation is rare but may result with severe myelopathy. This kind of herniations tend to be central and large. The present study demonstrates that diagnosis and adequate anterior decompression in C2-C3 disc herniations may provide an excellent outcome.

KEYWORDS: C2-3 disc herniation, Upper cervical herniation, Anterior decompression, Cervical disc herniation

INTRODUCTION

Cervical disc herniations mostly occur at C5–C6 and C6–C7 levels (2). Thus, most spinal surgeons have experience in lower cervical levels. Anterior surgery of the upper cervical spine is relatively rare, since the majority of cervical spine disorders affect the lower cervical spine.

Due to spondylotic changes and fusion at the lower cervical levels, the upper levels of cervical spine are more mobile than the lower and carry a greater load during cervical spine movement in the elderly (10,18). The overall incidence of disc herniation between C2 and C3 is less than 1% (1). The literature contains only 13 publications reporting 24 cases of C2–C3 disc herniations (Table I). While lower level cervical disc herniations were seen in young adulthood or adulthood, upper cervical disc herniations were seen in elderly patients (1,3,5,19,20,22). Spondylotic changes and loss of soft-tissue volume in the middle and lower cervical spine make these regions less mobile in elderly patients, overloading the upper levels during cervical movement (20). Anterior cervical disc surgery can be applied in the C3-C4 level disc herniation, but C2-C3 level disc surgery is challenging. A variety of
techniques have been tried for the surgical treatment of C2–C3 disc herniations, including Cloward’s technique (9), anterior discectomy with auto/allograft fusion (3,5), transoral odontoidectomy with or without occipitocervical fusion (3,4), the far lateral approach (9,16), the posterior transdural approach(19,20,22) and the anterolateral extradural approach (25). Each of these techniques have advantages and disadvantages. We performed a retrospective analysis of 5 consecutive cases surgically treated for cervical myelopathy or myelo-radiculopathy with anterior cervical discectomy and interbody fusion with respect to the clinical and surgical results.

MATERIAL and METHODS

Between 2000 and 2009, 1100 patients who have been operated in our department for cervical disc herniation were studied retrospectively. A total of 5 patients were found to have been operated for C2-C3 herniation in that period. We reviewed the records of 5 patients who were operated for C2-C3 disc herniation. The information was collected on patient demographics, presenting symptoms, pre- and postoperative neurological status, preoperative imaging, operative technique, duration of follow-up, and postoperative complications. Symmetrical or asymmetrical distribution of the symptoms were also described. Neurological signs; including Hoffman's sign, Lhermitte's sign, Spurling maneuver and Babinski reflex; were evaluated. All patients were investigated by direct roentgenograms, computed tomography (CT) and magnetic resonance imaging (MRI) of the cervical spine. The degree of spinal stenosis was estimated from the axial images of both MRI and CT. All patients underwent anterior discectomy with upper retropharyngeal approach. Intervertebral cages filled with autogenous bone were used for fusion. Clinical and radiographic outcomes were assessed postoperatively and at 6-month intervals. Results were recorded early, at approximately 1 week postsurgery; and late, at 1 year postsurgery.

Demonstrative case: A 42-year-old man presented with face and neck pain and also as numbness at the same area. For the past two years, the patient had a progressive increase in the pain in the right side of his face and at the occipital area. Four months before presentation, the patient started to experience numbness in the right side of his face, mainly over the C2 dermatome. Physical examination revealed hyperreflexia in the upper and lower limbs with positive Babinski and Hoffman’s signs bilaterally. The patient had severe upper extremities paresis and right hand dysesthesia that prevented proper examination of the hand. MRI of the cervical spine revealed a disc herniation at the C2–C3 level with signal changes in the spinal cord at the C2–C3 (Figure 1A, B). The patient underwent an anterior C2–C3 discectomy and fusion using an Polyether-ether ketone (PEEK) cage filled with autogenous iliac crest bone graft. The patient had complete resolution of his symptoms within weeks after surgery. Postoperative MRI (Figure 2A, B) and CT (Figure 3A, B) of the cervical spine demonstrated a good decompression and fusion in the late postoperative period (12 months).
RESULTS

The mean patient age was 63 years (41-82 years). There was male predominance (4:1). The mean duration of follow-up was 30.7 months (range 18 and 44 months). The duration of symptoms ranged from 2 to 28 months. There was history of trauma in one of the cases. Most of the patients had perioral-facial numbness, and upper extremity paresis. In four of the patients, the pain was at the lateral occipital and under the oromandibular regions. Occipitocervical pain was detected in two patients who had paracentral disc herniation. Physical

Figure 1: Case 2. Sagittal A) and axial B) magnetic resonance imaging (MRI) taken before cervical disectomy showing evidence of large central disc herniation at the C2–C3 level. The cord compression ratio, derived by dividing sagittal measurement by transverse diameter is very low.

Figure 2: In the postoperative period, T2-weighted sagittal A) and axial B) magnetic resonance images show the decompression and fusion.
examination revealed pyramidal signs such as clonus; bilateral Hoffman and Babinski signs and hyperreflexia in all of patients who had large central disc herniations.

The summary of symptoms and signs are summarized in Table II. Nurick myelopathic scale were grade 3 in one patient, grade 4 in 3 patients, and grade 5 in one patient. Nurick scale is demonstrated in Table III.

In this series, radiological evaluation with MRI revealed all disc herniations. 4 patients had changes in signal intensity in the spinal cord at the level of the disc herniation. 4 of the patients had central, large and hard disc herniation (Figures 4A,B,C,D).

All of the patients were operated by an anterior retropharyngeal approach. The patient underwent an anterior C2-C3 discectomy and fusion using an Polyether-ether ketone (PEEK) cage filled with autogenous iliac crest bone graft. There was no case of symptomatic cage subsidence.

There was retroodontoid migration in none of the cases. The radiological improvement in these patients was eventually

<table>
<thead>
<tr>
<th>Table II: Clinical Features in 5 Patients with C2-3 Disc Herniations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case. No</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

O: Occipital, B: Brachialgia.

<table>
<thead>
<tr>
<th>Table III: Nurick Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0: Signs or symptoms of root involvement but without evidence of spinal cord disease</td>
</tr>
<tr>
<td>Grade 1: Signs of spinal cord disease but no difficulty in walking</td>
</tr>
<tr>
<td>Grade 2: Slight difficulty in walking, which did not prevented full-time employment</td>
</tr>
<tr>
<td>Grade 3: Difficulty in walking</td>
</tr>
<tr>
<td>Grade 4: Able to walk only with someone else’s help or with the aid of frame</td>
</tr>
<tr>
<td>Grade 5: Chair bound or bedridden</td>
</tr>
</tbody>
</table>

Figure 3: Sagittal A) and axial B) reconstruction computed tomographic (CT) image showing the fusion, and free spinal canal at the C2-C3 level.
Kotil K and Sengoz A: The C2-C3 Disc Herniations

[Image: Figure 4: Sagittal and axial MR images showing the large, central and hard disc herniations of case 2 (A&B) and case 3 (C&D).

confirmed with the postoperative control MRI (2 cases) and CT (5 cases). Postoperative CT was obtained at the second year of follow-up in all patients. Except one lost case, Nurick scale was 1 in three and grade 0 in 1 patients postoperatively.

The symptoms were resolved in 3 patients and were unchanged in one patient. One patient (66 y/m) died due to myocardial infarction one week after the operation. There was no complaint after the operation and he was checked in the upper cervical region by CT. He was discharged after the postoperative 1st day. He complained of chest pain two days later and was admitted intensive care, but he died due to myocardial infarction and respiratory insufficiency one week after the operation in the early follow-up period.

Fusion was observed in all cases except the one who was lost to follow-up due to death.

DISCUSSION

Surgical approaches to the upper disc level have been performed for inflammatory, neoplastic, traumatic and infectious processes (5).

Surgery for disc disease at the C2–C3 level is extremely rare. Herniation at this level is exceptionally uncommon, and it is seen most often in elderly patients. In older patients, C2–C3 and C3–C4 are more mobile than other cervical disc levels. The overall incidence of C2–C3 herniation is 0.28% (5). The incidence of C2–C3 disc herniation among our cases was 0.45%. There are only case reports in the literature about this entity. Chen et al. (5) have presented the largest case series. This is the second largest series of C2-C3 disc herniation. The literature contains only 13 publications reporting 24 cases of C2–C3 disc herniations (Table I), (1,3-5, 7,9,16, 19,20,22,). In these reports, 9 of 22 patients (41%) had extruded disc material that had migrated upward to the retroodontoid region. Patients with lower cervical disc protrusions tend to exhibit root symptoms more commonly than myelopathic findings (24) but our cases exhibited myelopathic findings more often than root symptoms.

Rupture of the posterior longitudinal ligament can produce disc herniation or subsequent epidural migration in the upper cervical spine, which may be associated with inflammatory change and secondary fibrocartilaginous metaplasia (12). Retroodontoid migration was not observed in our cases.

These patients also have nonfocal symptoms such as headache, dizziness, and tinnitus. In C2–C3 disc protrusion, patients also characteristically present with predominant suboccipital discomfort rather than middle and lower neck pain. Radicular symptoms, however, are rarely isolated to a single dermatome.

The most predominant symptom may be perioral numbness and cruciate paralysis (5). There is a relationship between the sagittal diameter of the spinal canal and cervical myelopathy (14,15). The sign of ascending dysesthesia in high cervical lesions, which indicates the greater involvement of the centrally situated cervical fibers, may be due to its slow development (6-8, 11, 17, 21). Three of our patients had cruciate paralysis with perioral numbness. Schneider (23) urged an alert examination of facial sensation in all spinal injuries to identify damage to the fibers or cell bodies of the descending spinal tract of the trigeminal nerve, correspondingly, which begin in the pons and medulla and extend downwards to at least the C4 cervical segment. The cruciate paralysis, characterized by ipsilateral or bilateral upper extremity paresis, with minimal or no lower-extremity involvement, is often precipitated by injury localized to the upper cervical spine (6).
Selecting the appropriate operative approach is the most important step for these patients. Despite many techniques described in the literature, there is still a lack of consensus concerning the optimum approach to the C2–C3 level. These techniques include Cloward's technique (9), anterior discectomy with autologous graft fusion (3), transoral odontoidectomy with or without occipitocervical fusion (3,5), the far lateral approach (16), the posterior transdural approach (19,22), and the anterolateral extradural approach (25). Each of these techniques has advantages and disadvantages. Every spine surgeon can perform an anterolateral simple microdiscectomy with fusion. Anterior approaches are extremely difficult in patients with a short and thick neck. We performed anterior cervical disc surgery for two patients who had short necks. The main disadvantages of Cloward's technique and the anterior discectomy with fusion are the difficulty in exposing the C2–C3 level in depth, the need for excessive retraction, and the problems in instrumentation and placing a graft. Various complications related to the anterior approach have been reported in the upper cervical disc disease. In a review of 85 patients who had this approach to the upper cervical spine, 9 (11%) had postoperative voice changes, and 3 (3.5%) had permanent vocal cord paralysis (11, 17, 19). Approach to the upper cervical spine in the central disc pathologies may be from both sides, right-handed persons generally prefer the right sided approach. Microsurgical approach is preferable to avoid injury to the accessory and hypoglossal nerves. Especially the hypoglossal nerve, which, coming from the cranial side, turns medially anterior to the external carotid artery, where it supplies the musculature of the tongue, has to be protected.

The superior thyroid artery, the lingual artery, and facial artery, all of which arise from the external carotid artery may be ligated if necessary.

The superior laryngeal nerve, which gives off internal and external branches, originates from the vagus nerve and runs laterally ruptured cervical disc: Review of 648 cases, 1939 to 2004. J Neurosurg 54:1015-1018, 2004

REFERENCES