Odontoid Fractures

ABSTRACT

OBJECTIVE: Odontoid fractures make up 10-15% of all cervical fractures. Odontoid process fracture and ligament injury can end up with antero- and posterolisthesis at C1-2 complex, subluxation and spinal cord compression.

METHODS: In this study, 12 cases with odontoid fractures treated at our department were evaluated. The radiological investigations revealed no type I fracture, nine type II fractures and three type III fractures. Eight cases were operated and three cases were treated conservatively. Complete fusion was achieved with no complications in all cases.

CONCLUSION: Until the last decade, odontoid fractures were feared because of high morbidity and dramatic radiological and clinical findings. However, they have now become a curable, benign traumatic lesions thanks to developments in spinal surgery.

KEY WORDS: Fusion, Odontoid fracture, Surgery
craniovertebral junction and magnetic resonance imaging (MRI). The treatment strategy for each case was established individually depending on age, clinical and radiological findings and patient preference. Accordingly, a conservative treatment was planned for type I odontoid fractures. For reducible type II and III fractures displaced more than 6 mm, a surgical procedure for odontoid screw fixation was planned. In cases where time had passed by in which there is an increased risk of pseudoarthrosis, an operative option was selected. A posterior fixation was performed in patients with an irreducible fracture. The choice of treatment was decided after discussion with patients. An operative procedure was selected for cases with type II odontoid fracture who did not wish to use external fixation for a long time.

RESULTS

There were seven male and five female patients. The mean age was 50.2 years, ranging between 16 and 81. The etiology was traffic accident in 9 cases and a fall in 3 cases. The neurological examination revealed minor deficits in 3 cases (%25). In radiological modalities, there was no type I fracture, whereas there were 9 type II fractures and 3 type III fractures. In one case, there was additional head trauma and in another case, a C3-4 dislocation accompanied the odontoid fracture.

Nine cases were operated (%75) and two cases were treated conservatively via a SOMI brace while one case rejected surgery. In operated cases, surgery was anterior odontoid screw fixation in six patients (%66) (Figure 1A,B), C1-2 sublaminar wiring in two patients (%22) and transarticular C1-2 screw fixation in one case.

<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Sex</th>
<th>Complaint</th>
<th>Neuro-deficit</th>
<th>Fracture type</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>m</td>
<td>Cervical pain</td>
<td>pos</td>
<td>2</td>
<td>Odontoid screw fixation</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>m</td>
<td>Cervical pain</td>
<td>neg</td>
<td>2</td>
<td>SOMI</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>f</td>
<td>Cervical pain</td>
<td>neg</td>
<td>3</td>
<td>SOMI</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>f</td>
<td>Cervical pain</td>
<td>neg</td>
<td>3</td>
<td>C1-2 wire fixation</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>f</td>
<td>falling</td>
<td>neg</td>
<td>2</td>
<td>Odontoid screw fixation</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>m</td>
<td>Cervical pain</td>
<td>neg</td>
<td>3</td>
<td>Odontoid screw fixation</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>m</td>
<td>weakness</td>
<td>neg</td>
<td>2</td>
<td>C1-2 transartiküler fixation</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
<td>m</td>
<td>falling</td>
<td>neg</td>
<td>2</td>
<td>Odontoid screw fixation</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>f</td>
<td>falling</td>
<td>neg</td>
<td>2</td>
<td>Odontoid screw fixation</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>f</td>
<td>Cervical pain</td>
<td>pos</td>
<td>2</td>
<td>C1-2 wire fixation</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
<td>f</td>
<td>Cervical pain</td>
<td>neg</td>
<td>2</td>
<td>Rejected surgery</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>m</td>
<td>Cervical pain</td>
<td>neg</td>
<td>2</td>
<td>Odontoid screw fixation</td>
</tr>
</tbody>
</table>

Figure 1A,B: A case with odontoid Type II fracture operated on by anterior screw fixation. The preoperative (A) and postoperative (B) Films are presented.
postoperative fusion in all operated cases six months after surgery with full mobilisation. The postoperative follow-up was 3-60 months. A Philadelphia brace was used in all operated cases during the postoperative six weeks. There was no complication or morbidity in operated and non-operated cases with ultimate functional recovery.

DISCUSSION

In determining the treatment strategy of odontoid fractures the D’Alonzo classification, odontoid process displacement and angulation on C2 body, and age played an important role in previous publications (1,2,8,15,23,24,26).

Cervical orthoses are used for conservative treatment (13,14,17,25). In 1996 Polin at al. reported 53% fusion with cervical collar and 74% fusion with halo immobilisation in 36 cases with type II fractures that were treated conservatively (17). In the same article, there was 100% fusion in type I fractures and 53-65% fusion in type III fractures with a cervical collar. In a study on 199 odontoid fracture cases, halo immobilisation sustained perfect fusion in type I and III fractures but there was 28% failure of fusion in type II fractures (11). When the treatment is sole immobilisation, type II fractures demonstrate the highest non-fusion rates. Different study groups reported non-union of 5-60% (22). There was 10% non-fusion in cases with 6 mm and less displacement, whereas, this rate went up to 70% in cases with displacement more than 6 mm (12).

The treatment of choice in these cases is therefore internal fixation with anterior screwing (5,10,19,21). Fixation is maintained by preserving motion of C1-2 complex with this technique. The fusion success of anterior screw fixations has been reported to be 100% (5,10,19,21). In our experience, there was also 100% fusion with anterior screw fixation. The results in this patient group as well as the literature are satisfactory, effective and safe. Therefore, in cases with reducible odontoid type II fracture not wishing to undergo external fixation, we offer an odontoid screw fixation.

In cases with irreducible displacement, surgery with posterior fixation is the choice of treatment (6,7,9). The indications for such cases could not be established in the literature. Fusion rates of 87-100% have been reported with posterior fixation (7,9). Posterior fusion strategies include different occipitocervical fixation and fusion methods such as C1-2 transarticular screwing, sublaminar wiring, C1 lateral mass and C2 pedicle screwing surgeries. In our series, posterior fusion surgeries were done in 3 cases. In one case, the surgery was transarticular screw application and it was sublaminar wiring in two cases. There was fusion in all cases.

CONCLUSION

Until the last decade, odontoid fractures were feared because of high morbidity and dramatic radiological and clinical findings. However, they have now become a curable, benign traumatic lesions thanks to developments in spinal surgery. Odontoid fixation is commonly indicated in cases with odontoid fractures displaced more than 6 mm, particularly in cases where time has gone by. However, in cases with reducible odontoid type II fracture not wishing to undergo external fixation, an odontoid screw fixation can be offered.

REFERENCES