

DOI: 10.5137/1019-5149.JTN.30216-20.2

Received: 09.04.2020 Accepted: 29.09.2020

Published Online: 26.10.2020

The Evolution of Publications in the Field of Scoliosis: A Detailed Investigation of Global Scientific Output Using Bibliometric Approaches

Serkan GULER, Sercan CAPKIN, Erdem Aras SEZGIN

Aksaray University Faculty of Medicine, Aksaray Education and Research Hospital, Department of Orthopaedics and Traumatology, Aksaray, Turkey

Corresponding author: Sercan CAPKIN 🖂 sercancapkn@gmail.com

ABSTRACT

AIM: To carry out an in-depth bibliometric analysis of scoliosis literature.

MATERIAL and METHODS: This study used the Web of Science database to identify relevant articles for analysis. The literature search used the keyword "scolio*" and focused on the period between 1980-2019. Bibliometric network visualizations and mapping of specific results were done using VOSviewer software.

RESULTS: The literature search yielded 9706 publications on scoliosis between 1980 and 2019. Of these, 6975 (71.9%) journal articles were included in the bibliometric summary. Orthopedics was the most common area of research (4581 articles, 65.67%), and the United States of America (USA) exhibited the highest publication productivity (2327 articles, 33.36%). Nanjing University in China had the highest number of publications among institutions (n=219, 3.13% of the total literature), and there were a total of 60130 citations in 6975 articles. Fifty-five articles had a minimum of 100 citations, and the journal with the highest number of publications was 'Spine' (number of article: 1628, 23.3%).

CONCLUSION: This bibliometric analysis may be regarded as a summary and evaluation of global scientific output on scoliosis and can, therefore, be used a guide for researchers, clinicians and students. Furthermore, the keyword analysis can aid professionals in the field when planning new studies.

KEYWORDS: Scoliosis, Bibliometric analysis, Citation analysis, VOSwiever, Most cited

ABBREVATIONS: WoS: Web of science, GDP: Gross domestic product, HDI: Human development index, USA: United States of America, UK: United Kingdom

INTRODUCTION

Scoliosis, a common deformity of the spine, is well-recognized and continues to attract high scientific interest aimed at understanding the complex mechanisms behind it (48). However, despite the increasing number of publications and numerous paradigm shifts in this field of research, several gaps in the knowledge base still exist (17,22,49).

Bibliometric analysis methods such as citation analysis represent a valuable tool often used to examine the trends and academic impact of scientific literature in various fields of research (33,41) and also determine the strength of publications (11). They typically use various statistical methods to analyze citations and compare differences between countries, institutions, authors, and time points (25). Recently, there has been a rapid increase in the number of bibliometric studies examining medical literature, with the aim of summarizing scholarly publications, identifying high-impact studies and contemporary trends in research, recognizing active journals, and investigating collaborations between countries (7-10,13,21,23,26). However, despite the large number of studies focusing on scoliosis, bibliometric analyses in this field are few and limited in the range of literature included (33,35,50). Therefore, the aim of this study was to provide a summary of global research output in the field of scoliosis by carrying out a bibliometric analysis of all relevant journal articles published since 1980 and exploring articles and journals with the highest academic impact, collaborations between countries, factors affecting publication productivity, and trends in research topics.

MATERIAL and METHODS

All data on articles focusing on scoliosis and published between 1980 and 2019 were extracted from Web of Science (WoS; Web of Science by Clarivate Analytics) on the 2nd of January 2020 and analyzed using bibliometric techniques. Ethical approval was not required for this study as the search was conducted using public databases. The title keyword used for the literature search was "scolio*" [Title: (scolio*) Refined by: Document Types: (ARTICLE) Timespan: 1980-2019. Indexes: SCI-Expanded, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI)], and a built-in function of WoS allowed us to explore the trends in publications and their distribution across countries, research areas, active organizations, active journals, active authors, trend topics, and number of citations. GunnMap2 (http://lert.co.nz/map/) was used to illustrate a world map, and bibliometric network and density visualizations and mapping were carried out using the VOSviewer software, version 1.6.13 (Van Eck and Waltman, Leiden University, Leiden, The Netherlands) (40). Outcomes were represented using labels, circles, and lines on the network visualization map, with larger circles representing greater contributions by that item and thick lines positioned close together indicating strong relationships. Elements on the density visualization map were assigned colors on a density scale increasing from blue to red, with a higher number of items around a point and greater weight of the neighboring items representing the red end of the scale.

Statistical analyses were carried out using SPSS (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.) Kolmogorov-Smirnov tests were used to explore data distributions, and correlations between the number of publications in a country and their gross domestic product (GDP), GDP per capita (purchasing power parity), and human development index (HDI) were analyzed using the Spearman's correlation coefficient. Linear regression was used to estimate the number of future publications (2019-2029), and a p value < 0.05 was considered statistically significant.

RESULTS

Total Number of Publications and Types of Documents

The literature search yielded 9706 publications, of which 6975 (71.9%) were journal articles, 808 (8.3%) were proceedings papers, 774 (7.9%) were meeting abstracts, 411 (4.2%) were editorial material, 364 (3.8%) were reviews and 360 (3.7%) were letters and others. This study included only journal articles, and the most common languages of publication were

English (n=6538; 93.7%), German (n=202), French (n=154), Russian (n=26), Spanish (n=15), Italian (n=12), Turkish (n=9), Portugese (n=6), Czech (n=5), Slovenian (n=3), Afrikaans (n=1), Hungarian (n=1), Persian (n=1), Polish (n=1), and Serbo Croatian (n=1). The total number of citations for journal articles was 130678, of which 69829 were self-citations and were excluded. The mean number of citations per article was 18.74, and the total h-index for all included journal articles was 118.

Active Research Areas

The most common area of research was orthopedics with 4581 (65.67%) published articles, followed by clinical neurology (2975, 42.6%); surgery (1041, 14.9%); pediatrics (744, 10.6%); general internal medicine (297, 4.2%); rehabilitation (242, 3.4%); biomedical engineering (215, 3.0%); radiology, nuclear medicine, and medical imaging (165, 2.3%); experimental research in medicine (137, 1.9%); anesthesiology (135, 1.9%); sports sciences (123, 1.7%); hereditary genetics (116, 1.6%); neurosciences (112, 1.6%); multidisciplinary sciences (98, 1.4%); and rheumatology (82, 1.1%).

Development of Publications

The distribution of publication years has been shown in Figure 1. Regression analysis estimated that 563 journal articles [95% confidence interval (CI): 510-615] would be published in 2020 and this would increase to 941 (95 CI%: 678-1204) in 2029. Other estimations have also been shown in Figure 1.

Active and Productive Countries

The United States of America ranked first in terms of productivity (measured using number of published articles) with 2327 publications, followed by China (925), Canada (578), Japan (442), UK (435), France (422), Germany (357), South Korea (209), Turkey (198), Italy (191), Sweden (186), Australia (113), Poland (112), Netherlands (110), Spain (104), India (96), Switzerland (78), Finland (75), Greece (70), Brazil (68), Taiwan (68), Israel (57), Iran (53), Denmark (50), and Austria (49) (Figure 2).

Published articles originated from a total of 90 countries, and international collaboration networks between countries that published a minimum of 5 articles together have been shown in Figure 3.

Factors Associated with the Numbers of Publications

A statistically significant correlation (p<0.001) between the number of publications on 'scoliosis' and GDP (r=0.709), GDP per capita (r=0.650), and HDI was observed (r=0.631).

Active Authors and Organizations

The ten most active authors were Qiu Y (212), Labelle H (170), Zhu ZZ (164), Lenke LG (142), Cheng JCH (128), Aubin CE (102), Bridwell KH (100), Newton PO (100), Betz RR (97) and Liu Z (85). The most active organizations in scoliosis research have been listed in Table I.

Active Journals

There were a total of 986 journals that published articles on scoliosis, of which 30 journals had published a minimum of 30

Organizations	RC	Organizations-Enhanced	RC
Nanjing University	219	University of Montreal	293
Washington University	202	Nanjing University	225
Shriners Hospital Children	167	Washington University WUSTL	216
Montreal University	144	University of California System	210
Chinese University Hong Kong	143	Polytechnique Montreal	147
Ecole Polytech	106	Chinese University of Hong Kong	145
University Hong Kong	104	Shriners Hospitals Children Philadelphia	138
Texas Scottish Rite Hospital Children	103	Assistance Publique Hopitaux Paris APHP	137
University Calif San Francisco	95	Harvard University	132
Hop ST Justine	85	Texas Scottish Rite Hospital for Children	130
Hospital Special Surgery	84	University of Hong Kong	109
Second Mil Med University	84	Chinese Academy of Medical Sciences Peking Union Medical College	108
Chinese Acad Med Sci	80	Peking Union Medical College Hospital	108
Minnesota University	80	Nemours Alfred I Dupont Hospital for Children	102
Alberta University	73	Johns Hopkins University	101
Childrens Hospital Philadelphia	72	Boston Childrens Hospital	100
Virginia University	72	University of Pennsylvania	98
Johns Hopkins University	71	PLA Second Military Medical University	97
University Calif San Diego	68	University of California San Francisco	95
Keio University	67	Rady Childrens Hospital San Diego	93
NYU	64	University of London	88
Rady Childrens Hospital	54	Hospital Special Surgery	84
Columbia University	53	New York University	84
Hong Kong Polytech University	52	University of Minnesota System	82
		University of Minnesota Twin Cities	82

Table I: Active Organization and Organizations-Enhanced on Scoliosis

RC: Record count.

Figure 1: Number of publications on the topic of scoliosis by year.

Figure 2: World map showing publication productivity in the field of scoliosis by country. Footnote: Productivity is represented on a scale ranging from green (low) to red (high).

Figure 3: Network visualization map for international collaborations on scoliosis.

Footnote: The sizes of the circles represent the number of publications, the colors indicate clusters of collaborations, and the thickness of the lines indicates strength of collaborations.

articles (Table II). The total number of citations and number of citations per article have been shown in Table II, while Figure 4 presents a citation network visualization map of these journals.

Citation Analysis

The twenty most cited articles have been listed in Table III along with the mean number of citations per year.

Co-Citation Analysis

There were 60130 citations for 6975 articles, with 55 articles having a minimum of 100 citations (co-citation density map shown in Figure 5). Moreover, 9 studies had been cited in over 200 articles (articles with highest number of co-citations) and these were as follows: Lenke et al. published in 2001 and cited 607 times (27); Cobb JR published in 1948 and cited 559 times (6); King et al. published in 1983 and cited 384 times (24); Lonstein and Carlson published in 1984 and cited 315 times (29); Weinstein et al. published in 2008 and cited 283 times (43); Nachemson and Peterson published in 1995 and cited 215 times (20); Nash and Moe published in 1969 and cited 213 times (32); and Suk et al. published in 1995 and cited 213 times (39).

Trending Topics

There were a total of 8466 keywords used in 6975 articles, and the 95 keywords used in at least 25 different articles have been listed in Table IV. Figures 6-8 show cluster network visualization maps for these keywords, trend analysis using network visualization maps for keywords, and network visualization map of keywords from articles with the most number of citations, respectively.

DISCUSSION

This study found an increasing trend in the number of published articles on scoliosis since 2008. Between 1980 and 2006, the number of published articles ranged from 65 to 168, and this increased to 216 by 2007. Between 2007 and 2015, the number of published articles remained between 207 and 368, after which it increased to 400 in 2016 and 500 in 2019. Linear regression analysis confirmed this increase and estimated that a similar increasing trend would persist.

Countries with stronger economies such as USA, China, Canada, Japan, UK, France, Germany, South Korea and Italy appeared to be more productive. However, developing countries also had significant contributions in this field of research, with Turkey, India, Brazil, Taiwan, Israel and Iran

Journals	RC	С	AC	Journals	RC	С	AC
Spine	1628	56381	34.6	Clinical Spine Surgery	54	160	3.0
European Spine Journal	576	8849	15.4	Journal of Neurosurgery Spine	54	651	12.1
Journal of Pediatric Orthopaedics	339	7050	20.8	International Orthopaedics	51	50	1.0
Journal of Bone and Joint Surgery American Volume	209	13457	64.4	World Neurosurgery		746	14.6
Spine Journal	137	1226	8.9	Clinical Biomechanics	47	541	11.5
Clinical Orthopaedics and Related Research	129	2561	19.9	Plos One	46	369	8.0
Journal of Spinal Disorders Techniques	117	1708	14.6	Acta Orthopaedica Scandinavica		823	19.1
Journal of Pediatric Orthopaedics Part B	93	761	8.2	Orthopedic Clinics of North America		992	23.1
Zeitschrift Fur Orthopadie und İhre Grenzgebiete	93	468	5.0	Orthopedics		449	11.0
Scoliosis and Spinal Disorders	90	357	4.0	Archives of Orthopaedic and Trauma Surgery		287	7.4
Journal of Bone and Joint Surgery British Volume	88	3640	41.4	Journal of Orthopaedic Science		250	6.6
Bmc Musculoskeletal Disorders	71	467	6.6	Journal of Spinal Disorders		812	21.4
Medicine	64	181	2.8	Journal of Neurosurgery Pediatrics		281	7.6
Revue de Chirurgie Orthopedique et Reparatrice de L'Appareil Moteur	57	274	4.8	Journal of Orthopaedic Research		856	23.1
Orthopade	55	270	4.9	Asian Spine Journal		39	1.3

Table II: Active Journals on Scoliosis

RC: Record count, C: Number of citation, AC: Average citation per document.

Figure 4: Network visualization map showing citation analysis of most active journals in the field of scoliosis. **Footnote:** The mean number of citations increases from blue to red (blue-green-yellow-red). The sizes of the circles represent the number of publications, and the thickness of the lines indicates strength of citation collaborations.

Figure 5: Density visualization map showing co-citation analysis in the field of scoliosis. Footnote: Number of citations are represented on a scale ranging from blue (low) to red (high).

Author Journal PY тс AC No Article Adolescent idiopathic scoliosis: a new classification to Journal of Bone and Joint Lenke et al. (27) 2001 1 850 42.5 Surgery-American Volume determine extent of spinal arthrodesis The selection of fusion levels in thoracic idiopathic Journal of Bone and Joint 2 1983 King et al. (24) 574 15.11 Surgery-American Volume scoliosis The prediction of curve progression in untreated Lonstein and Journal of Bone and Joint 3 1984 505 13.65 idiopathic scoliosis during growth Carlson (29) Surgery-American Volume Correlation of radiographic parameters and clinical Glassman et al. Δ 2005 Spine 497 31.06 symptoms in adult scoliosis (19)Segmental pedicle screw fixation in the treatment of 5 Suk et al. (39) Spine 1995 395 15.19 thoracic idiopathic scoliosis Effectiveness of treatment with a brace in girls who Nachemson Journal of Bone and Joint have adolescent idiopathic scoliosis - a prospective, 6 and Peterson 1995 384 14.77 controlled-study based on data from the brace study of Surgery-American Volume (31)the scoliosis-research-society Evoked Potentials-Somatosensory-evoked potential spinal-cord monitoring Electroencephalography 7 reduces neurologic deficits after scoliosis surgery -Nuwer et al. (34) 1995 376 14.46 and Clinical results of a large multicenter survey Neurophysiology Morrissy et al. Journal of Bone and Joint Measurement of the cobb angle on radiographs of 8 1990 349 11.26 patients who have scoliosis - evaluation of intrinsic error (30)Surgery-American Volume Schwab et al. Scoliosis research society-schwab adult spinal deformity 9 Spine 2012 343 38.11 classification a validation study (36)Weinstein et al. New England Journal of 10 Effects of bracing in adolescents with idiopathic scoliosis 2013 320 40 (45)Medicine Breast cancer mortality after diagnostic radiography -Doody 11 Spine 2000 307 14.62 findings from the us scoliosis cohort study et al. (16) 3-dimensional terminology of spinal deformity - a report presented to the scoliosis research society by 12 Stokes (38) Spine 298 11.04 1994 the scoliosis research society working group on 3-d terminology of spinal deformity Measurement of scoliosis and kyphosis radiographs -Carman Journal of Bone and Joint 1990 13 298 9.61 intraobserver and interobserver variation et al. (5) Surgery-American Volume Pedicle screw instrumentation of the thoracic spine in Liljengvist et al. Spine 14 1997 294 12.25 idiopathic scoliosis (28)Weinstein et al. Journal of Bone and Joint 15 Curve progression in idiopathic scoliosis 1983 290 7.63 Surgery-American Volume (46)Akbarnia et al. Dual growing rod technique for the treatment of 16 Spine 2005 285 17.81 progressive early-onset scoliosis - a multicenter study (1) Campbell et al. The characteristics of thoracic insufficiency syndrome Journal of Bone and Joint 17 2003 281 15.61 associated with fused ribs and congenital scoliosis (4) Surgery-American Volume Jama-Journal of the Health and function of patients with untreated idiopathic Weinstein et al. 18 American Medical 2003 279 15.5 scoliosis - a 50-year natural history study (44)Association The reliability and concurrent validity of the scoliosis 19 research society-22 patient questionnaire for idiopathic Asher et al. (2) Spine 2003 279 15.5 scoliosis Scoliosis and fractures in young ballet dancers - relation Warren New England Journal of 20 1986 277 7.91 to delayed menarche and secondary amenorrhea et al. (42) Medicine

Table III: The 20 Most Cited Manuscripts on Scoliosis

PY: Publication year, TC: Total citation, AC: Average citations per year.

Keyword	0	Keyword	0	Keyword	0	Keyword	0	Keyword	0
scoliosis	1672	brace	70	ais	45	blood loss	35	etiology	28
adolescent idiopathic scoliosis	1090	pulmonary function	69	sagittal alignment	45	outcome	35	growth modulation	28
idiopathic scoliosis	412	scoliosis surgery	65	curve progression	44	correction	34	neuromuscular	28
spine	223	degenerative lumbar scoliosis	61	surgical treatment	44	growing rods	34	spinal surgery	28
surgery	182	kyphosis	61	complication	43	rehabilitation	34	bone mineral density	27
spinal fusion	147	biomechanics	60	mrı	43	adolescents	33	polymorphism	27
congenital scoliosis	139	children	58	pedicle screws	41	pelvic obliquity	33	posterior instrumentation	27
posterior spinal fusion	136	degenerative scoliosis	58	risk factors	41	treatment	33	back pain	26
adolescent	118	bracing	56	classification	40	proximal junctional kyphosis	32	growth	26
cobb angle	117	computed tomography	56	instrumentation	40	adult spinal deformity	30	long-term follow-up	26
complications	113	early onset scoliosis	56	growing rod	38	conservative treatment	30	low back pain	26
neuromuscular scoliosis	111	outcomes	55	pain	38	flexibility	30	selective thoracic fusion	26
pedicle screw	87	syringomyelia	54	posture	38	melatonin	30	srs-22	26
deformity	85	reliability	53	prevalence	38	spine deformity	30	anterior instrumentation	25
spinal deformity	84	thoracic kyphosis	53	anterior spinal fusion	37	vertebral rotation	30	progression	25
early-onset scoliosis	80	brace treatment	50	health-related quality of life	37	posterior fusion	29	veptr	25
quality of life	78	fusion	48	pediatric	37	shoulder balance	29		
cerebral palsy	77	magnetic resonance imaging	48	spine surgery	37	adolescent idiopathic scoliosis (ais)	28		
adult scoliosis	71	sagittal balance	47	spinal instrumentation	36	adult	28		

Table IV: The Top 95 Trend Keywords most Frequently Used in Articles on Scoliosis

O: Number of occurrences.

appearing in the list of 25 countries with the most publications. Previous literature has shown that economic power and development indices are factors affecting publication productivity (11,12,14,15,25), and this was supported by the correlation observed between some indicators of economy and development in the current study. Furthermore, the correlation between productivity and GDP per capita was stronger than that between productivity and HDI,

implying that economic size had a stronger influence on publication productivity than level of development. Analysis of co-authorship between countries showed that geographic region was the primary factor for collaboration on scoliosis, and this was in agreement with previous evidence (11,12).

Most active journals that published 100 or more articles were of 7 journals, published with the 3135 (44.94%) articles. The most productive journal was Spine with 1628 (23.34%)

Figure 6: Network visualization cluster map showing keyword analysis in the field of scoliosis. **Footnote:** Clustering between keywords shown using 6 different colors. The sizes of the circles represent frequencies of keywords, while the thickness of the lines indicate strength of relationship.

Figure 7: Network visualization map showing trends based on keyword analysis in the field of scoliosis. Footnote: The frequencies of keywords are shown on a color scale from blue (low) to red (high). The sizes of the circles represent frequencies of keywords, while the thickness of the lines indicates strength of relationship.

Figure 8: Network visualization map showing the most cited keywords in publications in the field of scoliosis. **Footnote:** The number of citations received by keywords have been shown on a color scale from blue (low) to red (high). The sizes of the circles represent frequencies of keywords, while the thickness of the lines indicates strength of relationship.

publications, followed by the European Spine Journal (n=576, 8.25%). Journals having the highest average citations per article (more than 10 citations per article) were published with the 8 Journals. The Journal of Bone and Joint Surgery-American Volume had the highest mean number of citations per article (64.4), followed by the Journal of Bone and Joint Surgery-British Volume which had 41.4 citations per article. Based on these results, submission of articles to these journals is recommended. Moreover, researchers may also choose to primarily follow these commonly cited journals.

The article with the greatest impact (measured using mean of total citations) was "Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis" published by Lenke et al., in the Journal of Bone and Joint Surgery-American Volume in 2001 (27). The second most cited article was "The selection of fusion levels in thoracic idiopathic scoliosis" published by King et al., in the Journal of Bone and Joint Surgery-American Volume in 1983 (24), while the third most cited article was "The prediction of curve progression in untreated idiopathic scoliosis during growth" published by Lonstein and Carlson in the Journal of Bone and Joint Surgery-American Volume in 1984 (29). It is interesting to note that the 3 most commonly cited articles were all published in the same journal. Moreover, a majority of the 20 articles with highest impact originated from the USA. However, despite ranking second in terms of productivity, no articles originating from China were among the top 20 most cited articles. As

older articles typically have higher number of total citations, assessing average citations per year is essential when estimating the impact of an article. In the current study, Lenke et al had the highest number of mean citations per year (27), followed by the article titled "Effects of bracing in adolescents with idiopathic scoliosis" published by Weinstein et al. in the New England Journal of Medicine in 2013 (45). The third and fourth highest mean number of citations per year were shown by "Scoliosis research society adult spinal deformity classification a validation study" published by Schwab et al. in Spine in 2012 and "Correlation of radiographic parameters and clinical symptoms in adult scoliosis" published by Glassmann et al. in Spine in 2005, respectively (19,36). The most commonly co-cited articles were those published by Lenke et al. in 2001 and Cobb in 1948 (6,27). Finally, the fifth and sixth ranking articles were "Complications of growing-rod treatment for early-onset scoliosis: Analysis of one hundred and forty patients" published by Bess et al. in the J Bone Joint Surg Am in 2010 (not included in Table, total citation: 215, average citation per year: 19.55), and "Rates of infection after spine surgery based on 108,419 procedures: a report from the Scoliosis Research Society Morbidity and Mortality Committee" published by Smith et al. in Spine in 2011 (not included in Table, total citation: 193, average citation per year: 19.3), respectively (3,37). Therefore, the articles listed in this paragraph may be considered as cornerstone research on scoliosis.

Cluster analysis of keywords used in articles on scoliosis revealed 9 key clusters, while trend analysis showed that "pulmonary function", "health-related quality of life", "treatment", "adolescent", "rehabilitation", "pain", "curve progression", "classification", "blood loss", "spinal instrumentation", and "spine surgery" had greater popularity in earlier studies while "cobb angles", "degenerative lumbar scoliosis", "thoracic kyphosis", "pedicle screw", "adult scoliosis", "early-onset scoliosis", "adolescent idiopathic scoliosis" gained popularity and replaced earlier keywords over time. Contemporary studies focused on "syringomyelia", "brace", "neuromuscular scoliosis", "posterior spinal fusion", "quality of life", "cerebral palsy", "deformity", "complications", "kyphosis", "adolescent", "prevalence", and "sagittal balance". Keywords used in articles with the highest number of citations were "idiopathic scoliosis", "melatonin", "anterior spinal fusion", "outcome", "adult scoliosis", "sagittal balance", "instrumentation", "bone mineral density", "anterior instrumentation" and "pedicle screws".

To the best of our knowledge, only four other bibliometric analyses of scoliosis literature have been carried out so far (18,33,35,50). The first such analysis, published by O'Neill et al. in 2014, used the Science Citation Index (SCI) database to carry out bibliometric analysis and investigate the 100 most cited papers in the field of spinal deformity surgery. However, in addition to the keyword 'scoliosis', the study also included other keywords such as 'spinal deformity' 'kyphoscoliosis' 'kyphosis', 'lordosis', 'sagittal plane deformity', 'sagittal imbalance', 'coronal plane deformity', coronal imbalance' and 'spondylolisthesis' (35). Zhou et al. also examined the 100 most cited articles in the field of scoliosis surgery since the beginning of the 20th century (50), while Gambin-Botella et al. limited their analysis of the 100 most cited articles by using the keyword "idiopathic scoliosis" (18). The most recent bibliometric analysis, published by Neyman et al. in 2020, included the 100 most cited articles containing the keyword "adolescent idiopathic scoliosis" and published in the field of orthopedics between 1992 and 2017 (33). In contrast, the current study included all articles published between 1980 and 2019 and spanning all research topics under scoliosis, thus granting it wider coverage. Additionally, citations, co-citations, international collaborations, and trend keyword analyses using network visualization maps were also included. The present study is also the first to estimate the number of yearly publications in the field of scoliosis.

This study also had several limitations. Firstly, it only used a single database (WoS database, reaching back to 1980), selected because of its reliability with regard to identification of publications and citations and its popularity in contemporary bibliometric studies, and exclusion of additional databases such as Index Medicus, Index Copernicus, Google Scholar, or Scopus may have affected the number of documents and journals identified for inclusion in this analysis. However, by focusing on a single database, inclusion of duplicate studies in the analysis which could have decreased its reliability was avoided (23,25,47). Secondly, the cross-sectional study design may have affected the findings of the study as the number of citations may have been influenced by the point in time the literature search was carried out. Therefore, more recently published studies may change the rankings of the articles, necessitating an update of the results presented here.

CONCLUSION

The findings of this study showed a considerable increase in publications in the field of scoliosis. Productivity was seen to be highest in countries with larger economies such as USA, Canada, China and Japan, and the highest number of articles was published by the journal Spine. This bibliometric analysis may be regarded as a summary and evaluation of global scientific output on scoliosis and can, therefore, be used as a guide for researchers, clinicians and students. Furthermore, the keyword analysis can aid professionals in the field when planning new studies.

REFERENCES

- Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA: Dual growing rod technique for the treatment of progressive early-onset scoliosis: A multicenter study. Spine 30:S46-57, 2005
- Asher M, Min Lai S, Burton D, Manna B: The reliability and concurrent validity of the scoliosis research society-22 patient questionnaire for idiopathic scoliosis. Spine 28:63-69, 2003
- Bess S, Akbarnia BA, Thompson GH, Sponseller PD, Shah SA, El Sebaie H, Boachie-Adjei O, Karlin LI, Canale S, Poe-Kochert C, Skaggs DL: Complications of growing-rod treatment for early-onset scoliosis: Analysis of one hundred and forty patients. J Bone Joint Surg Am 92:2533-2543, 2010
- Campbell RM Jr, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, Pinero RF, Alder ME, Duong HL, Surber JL: The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am 85:399-408, 2003
- Carman DL, Browne RH, Birch JG: Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 72:328-333, 1990
- Cobb J: Outline for the study of scoliosis. In: Ann Arbor MI, Edwards J (eds), The Instructional Course Lectures. Cilt: 5, American Academy of Orthopaedic Surgeons, 1948:261-275
- Cohen J, Alan N, Zhou J, Kojo Hamilton D: The 100 most cited articles in metastatic spine disease. Neurosurgical Focus 41:E10, 2016
- Cutler HS, Guzman JZ, Al Maaieh M, Connolly J, Skovrlj B, Cho SK: Patient reported outcomes in adult spinal deformity surgery: A bibliometric analysis. Spine Deformity 3:312-317, 2015
- Cutler HS, Guzman JZ, Connolly J, Al Maaieh M, Skovrlj B, Cho SK: Outcome instruments in spinal trauma surgery: A bibliometric analysis. Global Spine Journal 6:804-811, 2016
- De la Garza-Ramos R, Benvenutti-Regato M, Caro-Osorio E: The 100 most-cited articles in spinal oncology. Journal of Neurosurgery. Spine 24:810-823, 2016
- Demir E, Comba A: The evolution of celiac disease publications: A holistic approach with bibliometric analysis. Irish Journal of Medical Science 189:267-276, 2020

- Demir E, Yasar E, Ozkocak V, Yildirim E: The evolution of the field of legal medicine: A holistic investigation of global outputs with bibliometric analysis. Journal of Forensic and Legal Medicine 69:101885, 2020
- Ding F, Jia Z, Liu M: National representation in the spine literature: A bibliometric analysis of highly cited spine journals. Eur Spine J 25:850-855, 2016
- Dogan G, Ipek H: The development of necrotizing enterocolitis publications: A holistic evolution of global literature with bibliometric analysis. Eur J Pediatr Surg 30(3):293-303, 2020
- Dogan G, Kayir S: Global scientific outputs of brain death publications and evaluation according to the religions of countries. J Relig Health 59:96-112, 2020
- Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE: Breast cancer mortality after diagnostic radiography: Findings from the U.S. Scoliosis Cohort Study. Spine 25:2052-2063, 2000
- El-Hawary R, Chukwunyerenwa C: Update on evaluation and treatment of scoliosis. Pediatric Clinics of North America 61:1223-1241, 2014
- Gambín-Botella J, Ayala M, Alfonso-Beltrán J, Barrios C: Predominance of studies with poor level of evidence among the top 100 most cited studies on idiopathic scoliosis: A bibliometric and content analysis. Spine Deformity 6:373-383, 2018
- Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR: Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682-688, 2005
- Harrington PR: Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44-A:591-610, 1962
- Huang W, Wang L, Wang B, Yu L, Yu X: Top 100 cited articles on back pain research: A citation analysis. Spine 41:1683-1692, 2016
- 22. Karol LA: The natural history of early-onset scoliosis. J Pediatr Orthop 39:38-43, 2019
- Kelly JC, Glynn RW, O'Briain DE, Felle P, McCabe JP: The 100 classic papers of orthopaedic surgery: A bibliometric analysis. The Journal of bone and joint surgery. British 92:1338-1343, 2010
- King HA, Moe JH, Bradford DS, Winter RB: The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65:1302-1313, 1983
- Kiraz M, Demir E: A Bibliometric analysis of publications on spinal cord injury during 1980-2018. World Neurosurg 136:e504-e513, 2020
- Lefaivre KA, Shadgan B, O'Brien PJ: 100 most cited articles in orthopaedic surgery. Clinical orthopaedics and related research 469:1487-1497, 2011
- Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K: Adolescent idiopathic scoliosis: A new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83:1169-1181, 2001
- Liljenqvist UR, Halm HF, Link TM: Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine 22:2239-2245, 1997

- Lonstein JE, Carlson JM: The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 66:1061-1071, 1984
- Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH: Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am 72:320-327, 1990
- 31. Nachemson AL, Peterson LE: Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am 77:815-822, 1995
- 32. Nash CL Jr, Moe JH: A study of vertebral rotation. J Bone Joint Surg Am 51:223-229, 1969
- 33. Newman JM, Shah NV, Diebo BG, Goldstein AC, Coste M, Varghese JJ, Murray DP, Naziri Q, Paulino CB: The top 100 classic papers on adolescent idiopathic scoliosis in the past 25 years: A bibliometric analysis of the orthopaedic literature. Spine Deformity 8:5-16, 2020
- 34. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE: Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: Results of a large multicenter survey. Electroencephalography and Clinical Neurophysiology 96:6-11, 1995
- 35. O'Neill SC, Butler JS, McGoldrick N, O'Leary R, Synnott K: The 100 most cited papers in spinal deformity surgery: A bibliometric analysis. Orthopedic Reviews 6:5584, 2014
- Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian H, Shaffrey C, Tribus C, Lafage V: Scoliosis Research Society-Schwab adult spinal deformity classification: A validation study. Spine 37:1077-1082, 2012
- 37. Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KM, Broadstone PA, Choma TJ, Goytan MJ, Noordeen HH, Knapp DR Jr, Hart RA, Donaldson WF 3rd, Polly DW Jr, Perra JH, Boachie-Adjei O: Rates of infection after spine surgery based on 108,419 procedures: A report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine 36:556-563, 2011
- 38. Stokes IA: Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19:236-248, 1994
- Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB: Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 20:1399-1405, 1995
- 40. van Eck NJ, Waltman L: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523-538, 2010
- 41. Virk SS, Yu E: The Top 50 articles on minimally invasive spine surgery. Spine 42:513-519, 2017
- 42. Warren MP, Brooks-Gunn J, Hamilton LH, Warren LF, Hamilton WG: Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. New England Journal of Medicine 314:1348-1353, 1986
- Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA: Adolescent idiopathic scoliosis. Lancet (London, England) 371:1527-1537, 2008

- Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV: Health and function of patients with untreated idiopathic scoliosis: A 50-year natural history study. Jama 289:559-567, 2003
- 45. Weinstein SL, Dolan LA, Wright JG, Dobbs MB: Effects of bracing in adolescents with idiopathic scoliosis. New England Journal of Medicine 369:1512-1521, 2013
- 46. Weinstein SL, Ponseti IV: Curve progression in idiopathic scoliosis. J Bone Joint Surg Am 65:447-455, 1983
- 47. Xie L, Chen Z, Wang H, Zheng C, Jiang J: Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on web of science and VOSviewer. World Neurosurg 137:435-442.e434, 2020

- 48. Yaman O, Dalbayrak S: Idiopathic scoliosis. Turk Neurosurg 24:646-657, 2014
- 49. Zapata KA, Sucato DJ, Lee MC, Jo CH: Skeletally immature patients with adolescent idiopathic scoliosis curves 15°-24° are at high risk for progression. Spine Deformity 7:870-874, 2019
- 50. Zhou JJ, Koltz MT, Agarwal N, Tempel ZJ, Kanter AS, Okonkwo DO, Hamilton DK: 100 most influential publications in scoliosis surgery. Spine 42:336-344, 2017