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ABSTRACT

AIM: To identify copy number variations that are specific to myxopapillary ependymomas (MPEs) of the cauda equina.   
MATERIAL and METHODS: The patient cohort included five patients who underwent resection of histologically confirmed MPEs. 
Tumor samples collected during surgery and stored in liquid nitrogen as well as corresponding blood samples collected were 
analyzed. Genomic DNA from the venous blood and tumor samples was obtained using standard techniques and hybridized to a 
Cytoscan 750K Array in accordance with the manufacturer’s introductions.
RESULTS: As a novel finding, amplification on chromosome 14q32.33 was detected in all tumor and blood samples, except one 
tumor sample. All tumor tissues also showed amplification on chromosomes 5, 7, 9, and 16.
CONCLUSION: Although further studies with larger cohorts are required to identify genes involved in MPE tumorigenesis and to 
validate our results, these findings provide a basis for advanced molecular biological and genetic studies of MPEs.
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the conus medullaris, cauda equina, or filum terminale (4). 
Although classified as a grade I tumor, an MPE is associated 
with distant metastases, subarachnoid dissemination, and 
late recurrences, particularly in the pediatric population (16).

A copy number variation, which is a cell-owned genomic 
structural number variation, is one of the causes of genetic 
diversity as well as tumorigenesis. Copy number variations 
results in an abnormal gene copy number in the cell via am-
plification and deletion events. Such changes cause several 
alterations in genomic segment numbers in tumor cells, which 
is an important structural change that plays an important role 
in tumorigenesis (13).

█   INTRODUCTION

Ependymomas are primary tumors of the central nervous 
system that originate from the walls of the cerebral 
ventricles and the spinal cord canal. Although the histo-

logical features are similar, ependymomas exhibit highly vari-
able clinical behaviors possibly due to genetic heterogeneity; 
therefore, these tumors are divided into five different subtypes 
(5).

A myxopapillary ependymoma (MPE), with distinct histological 
features, arises in specific regions of the spine, including 
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To identify viable drug targets and predict biological behaviors, 
elucidating the molecular mechanisms underlying the 
development of ependymomas is crucial. Therefore, for the 
first time, to the best of our knowledge, we aimed to assess 
copy number variations in five histologically confirmed cases 
of MPE by analyzing blood and tumor samples.

█   MATERIAL and METHODS
The study protocol was approved by the Clinical Research 
Ethics Committee of Marmara University Faculty (approval 
no. 09.2016.147) and was conducted in accordance with the 
tenets of the Declaration of Helsinki.

Patient Selection

The study cohort included five patients who underwent 
surgeries for pathologically confirmed MPEs of the cauda 
equina. Informed consent was obtained from all patients prior 
to study inclusion. Tumor samples were collected at the time 
of surgery and stored in liquid nitrogen. In addition, blood 
samples were collected.

Single Nucleotide Polymorphism Genotyping and Copy 
Number Variation Analyses

Genomic DNA from the peripheral venous blood and tumor 
tissue samples was obtained using standard techniques and 
hybridized to a Cytoscan 750K Array (Affymetrix, Inc., Santa 
Clara, CA, USA), in accordance with the manufacturer’s 
instructions. Median centering of copy number probes was 
performed before summarization and visualization using 
the GeneChip® Scanner 3000 7G System (Affymetrix, Inc.). 
Significant focal regions of amplification or deletion were 
identified using the Chromosome Analysis Suite 3.1 software 
package (Affymetrix, Inc.)

█   RESULTS
Patient Demographics

Of the five patients (age, 30–45 years) included for analysis, four 
were male and one was female. Radiological and histological 
findings were similar among all patients. Representative 
preoperative T1- and T2-weighted magnetic resonance 

(MR) images are shown in Figure 1, whereas representative 
histopathological images of patient 3 are shown in Figure 2.

Copy Number Variations

Screening of all blood and tumor samples revealed numerous 
amplifications and a few deletions. A representative karyotype 
is shown in Figure 3 [Figure 3 near here]. Whole genome 
analysis of the blood sample of patient 1 demonstrated 
amplifications on chromosomes 7q36.2 and 14q.32.33, 
whereas that of the tumor sample revealed amplifications 
on chromosomes 5, 7, 9, 16, 18, and 20 and partial 
amplifications on chromosomes 8p23.3 and 14q32.33. Whole 
genome analysis of the blood sample of patient 2 showed 
amplifications on chromosome 14q32.33, whereas that of the 
tumor sample exhibited amplifications on chromosomes 5, 7, 
9, 16, and 17. The blood sample of patient 3 demonstrated 
amplification on chromosome 14q32.33 and deletion on 
chromosome 16p13.3, whereas the tumor sample contained 
whole amplifications on chromosomes 5, 7, 9, 16, 18, and 
21q and partial amplifications on chromosomes 6p25.3, 
14q32.33, and Yp11.2. The blood sample of patient 4, who 
exhibited the most aggressive tumor in the present study, 
showed amplifications on chromosomes 14q32.33, 20p12.1, 
22q11.22, and Yp11.2 and deletions on chromosomes 1q21.1 
and 16p13.11. Besides having the most aggressive tumor, 
patient 4 also exhibited the greatest number of copy number 
variations. The tumor sample of patient 4 showed whole 
amplifications on chromosomes 5, 7, 9, 16, 18, and 20, partial 
amplification on chromosome 14q32.33, and deletion on 
chromosome 1q21.1. The blood sample of patient 5 exhibited 
partial amplifications on chromosomes 1q31.1 and 14q32.33, 
whereas the tumor sample showed partial amplifications on 
chromosomes 1q31.1, 14q32.33, and Yp11.2. Chromosomal 
gains and losses are shown in Table 1.

All tumor samples exhibited a higher number of chromosomal 
variations compared with that of the blood samples; this 
finding was compatible with the genetic structure of tumors. 
Notably, the blood and tumor samples of all patients, 
except the tumor sample of patient 2, showed amplification 
on chromosome 14q32.33. All tumor samples showed 
amplifications on chromosomes 5, 7, 9, and 16. Chromosome 
20 of four tumor samples and chromosome 18 of three 

Figure 1: Representative 
MR images of patient 3. A 
preoperative T2-weighted 
MR image showing high 
intensity areas (A). A 
preoperative T1-weighted 
MR image with contrast 
showing homogenous 
enhancement patterns (B).
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Figure 2: Histopathological findings of patient 3. Microscopic analysis revealed elongated tumor cells surrounded by vascularized 
myxoid stromal cores (A). Myxoid matrix accumulation between vessels and perivascular tumor cells. Tumor cells had round nuclei and 
delicate chromatin. Papillary structures were not apparent. There was no mitosis or necrosis. Myxoid areas were stained with Alcian 
blue. The tumor cells showed diffuse staining for vimentin and glial fibrillary acidic protein (GFAP) (B) and dot-like staining for epithelial 
membrane antigen (EMA) (C). These findings confirmed the diagnosis of an MPE. A) Perivascular arrangement of elongated tumor cells 
surrounding vascularized myxoid cores (H&E stain, ×100). B) Diffuse GFAP immunoreactivity in tumor cells (GFAP stain, ×200). C) Dot-
like EMA immunoreactivity in tumor cells (EMA stain, ×200).

Table I: Chromosomal Aberration of Cases

Patient Blood Tumor

I 7q36.2(amp)
14q32.33(amp)

5,7,9,16,18,20 (amp)
8p23.3(amp)

14q32.33(amp)

II 14q32.33(amp) 5,7,9,16,17(amp)

III 14q32.33(amp)
16p13.3(del)

5,7,9,16,18,20,21q (amp)
6p25.3(amp)

14q32.33(amp)
Yp11.2(amp)

IV

1q21.1(del)
6p13.11(del)

14q32.33(amp)
20p12.1(amp)
22q11.22(amp)
Yp11.2(amp)

5,7,9,16,18,20 (amp)
1q21.1(del)

14q32.33(amp)

V 1q31.1(amp)
14q32.33(amp)

5,7,9,16,20 (amp)
1q31.1(amp)

14q32.33(amp)
Yp11.2(amp)

Del: Deletion, Amp: Amplification.

tumor samples contained amplifications. Patient 4, who 
was diagnosed with the recurrence of an aggressive tumor, 
had undergone three surgeries because of metastasis—two 
surgeries of the thoracic spine and one of the posterior fossa. 
All metastases were histologically confirmed as MPEs. Whole 
genome analysis of the blood sample of patient 4 revealed 
unique genetic alterations to chromosomes 22q11.2 and 
20p11.2, whereas the tumor sample exhibited deletion on 
chromosome 1q21.1. The tumor samples of patients 3 and 
5 and blood sample of patient 4 exhibited amplifications on 
chromosome Yp11.2.

█   DISCUSSION
It has long been known that chromosomal abnormalities 
are present in tumor cells. Unlike normal cells, tumor cells 
are typically aneuploid and often contain translocations, 
deletions, and/or amplifications (14). Previous studies have 
revealed location-specific molecular profiles and high intra-
tumoral heterogeneity at each location of the central nervous 
system (15,17). To elucidate the biological basis of regional 
heterogeneity of ependymomas, most studies have focused 
on field-specific molecular changes by analyzing genomic 
sequences (8,11). To understand intra-tumoral heterogeneity 
in all anatomical compartments (supratentorial, infratentorial, 
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Figure 3: Karyotype view of copy 
number variation analyses of the blood 
and tumor samples from all patients. 
Blue lines indicate amplification, and red 
lines indicate deletion.
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study, a tumor sample from only one patient revealed a gain 
of chromosome 17.

In contrast to prior reports, the results of the present study 
demonstrated that amplification on the chromosome 14q32.33 
region in tumor tissues and matched blood samples of our 
patients is a novel copy number variation.

█   CONCLUSION
A microarray platform was employed in the present study 
to detect high-resolution copy number variations across 
the whole genome, which identified novel chromosomal 
aberrations in MPEs. Molecular biological and genetic studies 
of MPEs are rare in the literature. This is the first study to 
report copy number variations throughout the entire MPE 
genome. Previous studies of MPEs have typically focused on 
gene expression profiles. In the present study, chromosomes 
5, 7, 9, and 16 were amplified in all patients, particularly the 
tumor tissues. Furthermore, amplification on the chromosome 
14q32.33 region in blood and tumor tissue samples from our 
patients revealed a novel copy number variation. Genetic 
analysis of chromosome 14q32.33 identified >200 genes. 
However, further studies with larger cohorts are required to 
identify genes involved in MPE tumorigenesis as well as to 
validate our results. Nonetheless, these findings provide a 
basis for advanced molecular biological and genetic studies 
of MPEs.
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