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The Geometry of the Circle of Willis Anatomical Variants as a 
Potential Cerebrovascular Risk Factor

ABSTRACT

(A1) of the anterior cerebral arteries (ACA) and the anterior 
communicating artery (ACoA) (22). The major branches arising 
directly from the circle of Willis are the anterior inferior cer-
ebellar arteries, the superior cerebellar arteries (SCbA), the 
second segments of the posterior cerebral arteries, the middle 
cerebral arteries (MCA), and the second segments of the ante-
rior cerebral arteries (Figure 1) (33).

█    INTRODUCTION

The circle of Willis is the anastomotic system that con-
nects the four sources of brain vascular supply: The 
two internal carotid arteries (ICA) and the two vertebral 

arteries (VA) (18). It is formed by the basilar artery (BA), the 
first segments (P1) of the posterior cerebral arteries (PCA), the 
posterior communicating arteries (PCoA), the first segments 

AIM: Anatomical variants of the circle of Willis are diverse and frequent and, although they are not a direct cause of cerebrovascular 
diseases, they are risk factors for impaired collateral perfusion and wall shear stress. This study aimed to correlate the anatomical 
variants with their effects on the hemodynamic and geometrical parameters responsible for the pathogenesis of neurological 
diseases.
MATERIAL and METHODS: The circle of Willis and the proximal segments of the main arteries were dissected and measured on 
ten formalin-fixed human brains. The anatomical variants were systematized using descriptive statistics. The mathematical models 
for brain perfusion and wall shear stress were developed by optimally approximating resistance to flow, vascular conductance, and 
branching.
RESULTS: Eighty percent of the brains presented asymmetries, especially in the posterior communicating (70%) and anterior 
cerebral (40%) arteries. The posterior circulation had more variations (65.21%). Nine hypoplastic vessels were found in 7 brains. 
Atypical origins were observed in eight cases. According to the mathematical models, which integrated each anatomical change 
in the global circle of Willis anatomy, the circle of Willis’ geometry could represent a risk factor for intracranial aneurysms and 
atherosclerosis, mostly when hypoplastic arteries are present, due to high resistance to flow and imbalanced bifurcation geometry. 
Accessory vessels are less associated with cerebrovascular risk.
CONCLUSION: We described anatomical variants of both the anterior and posterior circulations and their specific effects on the 
hemodynamic balance of cerebral blood flow.
KEYWORDS: Anatomical variant, Circle of Willis, Perfusion, Shear stress
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The circle of Willis is a highly variable anatomical complex. The 
classical anatomical variant is symmetrical with a complete 
contour (11,21), while 50% of the healthy brains (1) and 
80% of the dysfunctional brains present other variants (12). 
Although the anatomical variants do not directly impair brain 
perfusion, they may increase the risk of neurological diseases 
by two main mechanisms: they may influence collateral 
perfusion (5,8,37), leading to vascular and neurological surgery 
complications (1,12,19,27,30,38), cerebral infarcts (3,17), 
migraine (9,10), or even psychiatric diseases (14,23), or the 
imbalanced branching geometry present in some variants can 
predispose to wall shear stress (2,5,29) associated with the 
formation and rupture of intracranial aneurysms (6,13,26,29) 
and with atherosclerosis (7,29). How each particular variant 
influences these processes is not fully understood. Thus, 
this study aimed to investigate the correlations between the 
characteristics of the arteries and branching points of some 
anatomical variants and the geometric features known to 
increase the cerebrovascular risk.

█    MATERIAL and METHODS
This study followed the provisions of the Declaration of 
Helsinki, 1995 (as revised in Edinburgh 2000). Ten formalin-
fixed human brains that were held for teaching purposes in 
the anatomy collection of the “Iuliu Hatieganu” University 
of Medicine and Pharmacy, Cluj-Napoca, Romania, were 

used. The research protocol was approved by the Ethics 
Committee of the “Iuliu Hațieganu” University of Medicine 
and Pharmacy Cluj-Napoca (registration number 197/2016). 
Since the brains have been kept separated from the bodies 
for many years, it was not possible to ascertain the causes of 
death. However, cerebrovascular causes could be excluded 
as the brains showed no pathological processes. The study 
included a total of 120 arterial segments and 90 branching 
points. The circle of Willis and the proximal segments of the 
main arteries were dissected, and their diameters and lengths 
were measured using a Vernier caliper. The bases of the brains 
were photographed with a Nikon COOLPIX L120 camera from 
three standard angles: 20 cm parallel to the plane containing 
the anterior face of the pons and the two temporal poles, 
15 cm parallel to the orbital gyri, and 15 cm parallel to the 
anterior surface of the brainstem. Anatomical variants such 
as asymmetry, hypoplasia, atypical origin, fusion, absence, 
or duplication were recorded and tabulated using descriptive 
statistics.

To assess hemodynamics and wall shear stress, the resistance 
to flow (R) was calculated using the Hagen-Poiseuille law (28): 

R=8ηl/(πr4)

where ƞ is the blood viscosity, l is the length of the arterial 
segment, and r is the radius of the vessel. The vascular 
conductance (C) corresponds to the inverse of the resistance 
to flow (16):

C=1/R

To determine the optimality of the branching points, a 
bifurcation geometry model was used (40), according to which 
the apex of the bifurcation divides the blood flow of the parent 
artery (represented by its diameter d0) into two streamlines (c1 
and c2) (Figure 2). The relation between the ratio of the branch 
arteries’ diameters (d1 and d2) and the position of the flow 
divider is determinant for the branching optimality (20,36,40).

Thus, the segments c1 and c2 were measured and the 
observed position of the flow divider (γo) was expressed as: 

γo= c2/ c1

The optimal position of the flow divider (γt) was obtained 
using a theoretic curve for the optimal position of the flow 
divider to the minimum lumen surface wall shear stress as a 
function of the ratio of the branch diameters (d2/ d1) (36). To 
determine the relative perception of the branching optimality 
in all bifurcations, the percentage departure from optimality (B) 
was calculated through the following formula:

B= [(γo–γt) / γt] *100

Finally, the Microsoft Excel 2010 and the Xara Photo & Graphic 
Designer were used to build models of brain perfusion and wall 
shear stress, which integrated the resistance to flow, vascular 
conductance, and percentage departure from optimality, for 
each arterial circle. The use of color scales and radar charts 
are presentation of the risk distribution within the circle of 
Willis.

Figure 1: Circle of Willis. ACA: anterior cerebral artery; ACoA: 
anterior communicating artery; AICbA: anterior inferior cerebellar 
artery; BA: basilar artery; ICA: internal carotid artery; MCA: middle 
cerebral artery; PCA: posterior cerebral artery; PCoA: posterior 
communicating artery; SCbA: superior cerebellar artery. 
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█    RESULTS
Anatomical Variants

A high arterial variability was found on the basal view of the 
brains (Figure 3). Each brain presented at least one morpho-
logical change. Moreover, 40% of the brains presented mul-
tiple anomalies. Anatomical variants occurred mainly in the 
posterior half of the circle, and the most frequent were asym-
metry, hypoplasia, and atypical origins, occurring especially in 
the posterior communicating, anterior cerebral and superior 
cerebellar arteries (Figure 4). Accessory or absent vessels 
were also found, including the double superior cerebellar 
artery, the double or absent anterior inferior cerebellar artery, 
and the absent anterior communicating artery with fusion of 
the anterior cerebral arteries forming a single trunk, which 
divided into the two pericallosal arteries (Figure 5).

Geometric Characteristics

The diameter of the proximal and distal segments, as well 
as the length of each artery within the circle of Willis and the 
internal perimeter of the circle of Willis were measured and the 
mean values were calculated (Table I).

Graphical models illustrating the differences in the relative 
diameter of the arterial segments in each specimen were used 
to mark each segment according to its resistance to flow and 
its departure from branching optimality (Figure 6). This was 
done using a gradient of colors ranging from dark red to dark 
blue. At the branching points, the color code represents the 
value of the departure from branching optimality, whereas 

Figure 2: Bifurcation geometry model after Zamir (1982)(40). The 
apex of the bifurcation divides the blood flow of the parent artery 
(represented by its diameter d0) in two streamlines (c1 and c2). The 
diameters of the branches are d1 and d2.

Figure 3: Basal surfaces of the ten formalin fixed human brains.
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Figure 4: The 
distribution of the 
anatomical variants. 
ACA: anterior 
cerebral artery; 
ACoA: anterior 
communicating 
artery; 
AICbA: anterior 
inferior cerebellar 
artery; 
ICA: internal carotid 
artery; 
MCA: middle 
cerebral artery; 
PCA: posterior 
cerebral artery; 
PCoA: posterior 
communicating 
artery; 
RAH: recurrent 
artery of Heubner; 
SCbA: superior 
cerebellar artery.

Figure 5: Examples 
of anatomical 
variants encountered 
among the brain 
specimens. Each 
variant is indicated 
with arrows.

Hypoplasia
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in the arterial segments the color represents the resistance 
to flow. The darkest red represents the highest resistance to 
flow and greatest departure from branching optimality, thus 
representing the areas that are most likely to become a risk 
in cerebrovascular disease. At the opposite pole, the darkest 
blue stands for the areas least prone to become involved in 
pathological processes. In addition, the vascular conductance 
values were integrated into radar charts. The interpretation of 
the charts results from the analysis of the distance between 
the red line and the center of the chart—the higher the 
distance, the better the conductance, and vice-versa. The 
mean values for the conductance, resistance and branching 
optimality were integrated into a single model.

By comparing the different types of arteries in terms of the 
mean resistance to flow and the mean departure from branch-
ing optimality (Figure 7A, B), we observed different behaviors. 
First, hypoplastic arteries presented a higher resistance to 
flow and a greater departure from branching optimality than 
arteries within the circle of Willis. Second, the atypical origin of 

Figure 6: Graphical models. The color code corresponds to the departure from branching optimality to the branching points and to the 
resistance to flow in the arterial segments. Vascular conductance was represented with radar charts. C: conductance; R: resistance to 
flow; B: percentual departure from branching optimality.

Table I: Mean Diameters and Lengths of the Arteries and Mean 
Perimeter of the Arterial Polygon

Artery
Mean proximal 

diameter 
(mm)

Mean distal 
diameter 

(mm)

Mean 
length 
(mm)

ICA - 4.35 -

ACA 2.7 2.52 14.63

ACoA 2.18 - 2.31

MCA 3.85 - -

PCoA 1.51 1.52 12.98

PCA 2.59 3.9 5.89

BA - 4.29 26.48

Mean perimeter 
(mm) 64.54
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but functionally absent. Most previous studies did not assess 
asymmetry. One exception was a study by Gunnal et al., who 
found that asymmetry was more frequent in the PCoA (38%) 
followed by A1 (31%) and P1 (22%) (15), which is consistent 
with our findings.

The circle of Willis is meant to provide collateral perfusion 
when an artery is occluded (24). Among patients with stroke, 
those presenting the normal circle of Willis variant experience 
lower severity, recurrence rate and mortality, as well as a 
better recovery (22). Nevertheless, the different anatomical 
variants exert a crucial effect on the hemodynamic balance. 
Thus, we analyzed the geometry of the anatomical variants 
and identified some types or locations of arteries or branching 
points with geometrical characteristics that are more likely 
to impair the hemodynamic balance within the circle of 
Willis. Some variants have a higher potential to comprise 
a cerebrovascular risk factor than others; for example, 
hypoplastic arteries presented higher resistance to flow and 
more imbalanced bifurcation geometry whereas accessory 
vessels presented less modified geometric characteristics. In 
line with our findings, David and Moore reported a prevalence 
of 40% for hypoplastic arteries in brains with aneurysms as 
opposed to 22% in normal brains, whereas the prevalence of 
accessory vessels in brains with aneurysms was practically 
similar to that of normal brains (18% and 17%, respectively)
(11). Zaninovich et al. found a correlation between an 
incomplete circle of Willis and the incidence of ischemic or 
hemorrhagic stroke (41).

The presence of incisures in our model radar charts indicates 
an effect of the high resistance to flow on the vascular 
conductance throughout the circle of Willis. Those incisures 
represent the arterial segments with the poorest relative 
conductance in the arterial circle. In our specimens, the 
incisures correspond to the posterior communicating artery 
in the normal variant and to the hypoplastic arterial segments 
in the anatomical variations, such as the posterior and 
anterior cerebral arteries. Studies have shown that variants 
of the circle of Willis that include hypoplastic arteries affect 
cerebral perfusion in carotid stenosis (5) and during aortic 
surgery (27,28). According to Pappantchev et al., in cases 
of hypoplastic PCA, the territory of the homolateral MCA 
and PCA is at risk of hypoperfusion, and in patients with 
hypoplastic ACA, the territory at risk is the one supplied by 
the homolateral ACA and the contralateral ACA and MCA (33). 
In cases of ICA occlusion, hypoplastic PCoA is linked to an 
increased risk of stroke (22).

Another example is the association between the presence of 
hypoplastic, asymmetric, or atypical arteries and the depar-
ture from branching optimality. These types of arteries tend 
to increase the risk of formation and rupture of aneurysms at 
their branching points (13,25,26). A suboptimal branching of 
the bifurcations is linked to a higher wall shear stress (20). 
Prolonged exposure to wall shear stress induces adaptive 
responses in the endothelial cells, which favor the atherogen-
esis and degeneration of the arterial wall (29). This can also 
cause a higher rate of aneurysmal bleeding in patients with 
anatomical variations (26, 31). Asymmetrical A1 and PCoA 

some vessels affected their branching optimality but not their 
conductance. Asymmetric arteries are resistant to blood flow 
to a lower extent than hypoplastic arteries and have imbal-
anced bifurcation geometry to a higher extent than hypoplas-
tic arteries. The global resistance to blood flow throughout 
the circle of Willis enables for a good vascular conductance, 
except for the posterior communicating arteries, which have 
the lowest diameter among the other arteries and are often 
hypoplastic.

█    DISCUSSION
The anatomical variations of the circle of Willis found in this 
series of brain specimens are representative of those occurring 
in the general population. We found that variations were more 
frequent in the posterior circulation, the PCoA was the most 
variable artery, and the most common change was hypoplasia, 
followed by accessory vessels and arteries with atypical origin. 
Our results are in line with those of previous studies conducted 
on larger numbers of cadaveric specimens (21,23,24,30,32), 
and in vivo studies using magnetic resonance (MR) (19,22,39) 
or computed tomography (CT) (41) angiography. In previous 
imaging-bases studies, the frequency of absent vessels was 
higher than in our study and other previous cadaveric studies. 
On the other hand, the frequency of hypoplastic vessels was 
higher in our study and previous cadaveric studies than in 
imaging studies. The fact that hypoplastic vessels visualized 
and documented in cadaveric studies have no detectable 
blood flow may account for these differences since those 
vessels are usually classified as absent by imaging studies (41). 
In other words, those vessels are morphologically hypoplastic, 

Figure 7: A) Mean resistance to flow. B) Mean departure from 
branching optimality.

A

B

Hypoplasia

Hypoplasia
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connection. Nevertheless, recognizing the anatomical variant 
(15,31) or building a brain perfusion and wall shear stress 
model according to our method—which is quite simple and 
does not require any expensive software—could indirectly 
guide the clinician toward potential cerebrovascular risks 
when facing a patient with a specific anatomical variant.

█    CONCLUSION
The presence of anatomical variations in the circle of Willis 
can modify the hemodynamics of the cerebral blood flow. 
Specific anomalies influence cerebral hemodynamics 
differently. This study proposes a simple algorithm to assess 
the hemodynamic effects of particular anatomical variants 
and applies it on some examples of circle of Willis variations 
with different hemodynamic behaviors.
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