ABSTRACT

AIM: In unique clinical situations where C1-C2 posterior fixation is not available or has previously failed, an anterior transarticular screw (ATAS) may be a viable alternative. However, there are no previous reports that investigate possible screw angles, screw entry points, and screw length based on computed tomography (CT) multiplanar reconstruction images in Turkish patients. The aim of this study was to determine the morphometric characteristics C1-C2 vertebrae in order to perform anterior transarticular crossing screw fixation.

MATERIAL and METHODS: Patients who underwent a complete CT scan of the cervical spine for causes other than an investigation of cervical spine malformation or congenital anomaly between the years 2013 and 2015 were included in this study. The anterior transarticular C1-C2 screw angles, screw entry point, and screw length were measured on coronal and sagittal CT multiplanar reconstruction images.

RESULTS: Twenty-five male and 14 female patients were included in the study. The mean maximum screw angle for ATAS was found to be 41.18°±4.49°. The minimum and maximum screw lengths were 27.46±3.39 mm and 28.46±3.60 mm, respectively.

CONCLUSION: Preoperatively, performing a calculation of the possible screw angles, screw entry point, and screw length based on CT multiplanar reconstruction images for ATAS is a safe and applicable method. In cases in which ATAS fixation across the atlantoaxial joint procedure should be performed without performing a measurement, a screw angle not more than 41.18°±4.49° on the coronal plane does not damage the vertebral artery. Furthermore, using screws shorter than 28.46±3.60 mm doesn’t purchase the atlantoaxial joint.

KEYWORDS: Atlantoaxial joint, Computed tomography, Morphometry, Transarticular screw

INTRODUCTION

Anterior transarticular screw (ATAS) fixation is a well-defined technique alternative to posterior approach in the area of the first three vertebrae (1,3,5,14,18,21,24). ATAS fixation for atlantoaxial instability was first described by Barbour (5) in 1971. Then, Lu et al. (17) performed an anatomical study about this topic in 1998. There had been no further studies on the topic up to 2003. In 2003, Reindl et al. (18) studied a technique that was included a standard Smith-Robinson approach. After 2 years, a biomechanical study was performed by the same team and confirmed the effectiveness of this technique in atlantoaxial stabilization (19). Finally, some modifications in techniques of the minimally invasive surgery or percutaneous surgical procedures have been presented (12,14,16,21).

Since the introduction of this procedure (5), different trajectories for single (3,5,17,18) or double facet screws (14,17,21,24) have been reported in the literature. The open

Corresponding author: Kagan TUN
E-mail: kagan.tun@acibadem.com.tr
surgery was performed at the entry point that was set at just below the sulcus of the anterior C2 corpus. This point was located at the mid-point of the C2 vertebra corpus and the medial third of the C1–C2 facet joint. The screw was inserted into the C2 body 20° medially on the anteroposterior view and 30° cephalic on the lateral view, crossing the atlantoaxial joint just anterior to the midpoint (19).

Although screw entry points can be recognized relatively easily during surgery due to the fact that they are visible or palpable, to evaluate both the screw cutout and the true position of the screw inside the bony structures may be difficult. However, the ideal trajectories for the use of ATAS fixation across the screw inside the bony structures may be difficult. However, the ideal trajectories for the use of ATAS fixation across the C1–C2 for fusion. However, in certain patients, such as those with spina bifida or bone loss from prior surgeries, an alternative fusion technique is necessary for the use of the posterior arch of C1 for placement of the graft. In this situation, an alternative fusion technique is necessary for the posterior arch of C1 is deficient, which makes it difficult to accept right EC and the Mann-Whitney U test was used for right EC. The results are expressed as mean ± SD. A p value < 0.05 was considered statistically significant.

RESULTS

1. Results of CT measurements are shown in Table II: Mi-SPA, Ma-SPA, Ma-EP, Ma-EP, Hi, and HJ measurements were compared between males and females on both sides.
 a. With the exception of Ma-EP on the left side, statistically significant differences were not found between males and females (p>0.05).

2. Results of CT measurements are shown in Table III: Following upper evaluation, male and female measurements were combined. Then, Mi-SPA, Ma-SPA, and Ma-EP measurements were compared for the right and left sides.
 a. Except for Mi-SPA, statistically significant differences were not found between the right and left sides (p>0.05).

3. Results of CT measurements are shown in Table IV:
 a. Mean values of the parameters were combined for both gender and left and right sides.

DISCUSSION

The first two vertebrae have a complex structure. The articulation between them accounts for 12% of the flexion/extension and 50% of the rotation (47°) of the upper vertebra (22). Because of the fact that intervertebral discs do not exist, the stability of this segment is provided mainly by ligaments. Many disorders such as trauma, tumors, rheumatoid arthritis, congenital, inflammatory, and infectious diseases can cause instability of the first two vertebrae (9). Recently, fixation techniques have provided more stability and safety in surgery (8).

The Gallie, Brooks-Jenkins, and Sonntag techniques that were performed by the way of a posterior approach have been used for many decades to achieve arthrodesis (6,10). However, they have been associated with high fusion failure rates because of their limited stiffness in rotation and also the requirement for rigid postoperative immobilization (7). Different screw constructs for the first two vertebrae fixation are the Goel-Harms C1 lateral mass-C2 pedicle screw construct, the Wright C1 lateral mass-C2 translaminar (C1LM-C2TL) screw construct, and the C1 lateral mass-C2 (C1LM-C2) pars screw construct (8). In all these techniques, an intact posterior atlantal arch is usually necessary to secure a bone graft across C1-C2 for fusion. However, in certain patients, such as those with spina bifida or bone loss from prior surgeries, the posterior arch of C1 is deficient, which makes it difficult to use the posterior arch of C1 for placement of the graft. In this situation, an alternative fusion technique is necessary for the
The first alternative method, that had been described to fix the C1-C2 articulation, was Simmons and du Toit’s lateral atlantoaxial arthrodesis (20). Afterwards, a transarticular screw was placed through the C1-2 articular surfaces in another technique. Jeanneret and Magerl described this technique (11).

An anteriorly inserted transarticular screw fixation technique for the first two vertebrae has also been described (4,14). Due to the fact that it reduces the need for additional posterior surgery, an anterior approach for transarticular fixation may be advantageous in some patients who need the latter surgery following a ventral approach (14,21,24); for example, in cases

<table>
<thead>
<tr>
<th>Table I: Description of Points, Angles, and Lines Measured on Coronal and Sagittal Plane Cervical Vertebrae CT Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>ABD</td>
</tr>
<tr>
<td>ABE</td>
</tr>
<tr>
<td>ABF</td>
</tr>
<tr>
<td>ABG</td>
</tr>
<tr>
<td>CD</td>
</tr>
<tr>
<td>CE</td>
</tr>
<tr>
<td>CF</td>
</tr>
<tr>
<td>CG</td>
</tr>
<tr>
<td>HI</td>
</tr>
<tr>
<td>HJ</td>
</tr>
</tbody>
</table>
and only minor complications (3), and less anatomic risk for the vertebral artery after this procedure was developed (5). Also, the biomechanical properties of ATAS are compatible with posterior fixation techniques such as posterior transarticular screws (19) and posterior C1 lateral mass screw combined with C2 pedicle screw/rod systems (13).

Our study aimed to analyze the possible screw angles, screw entry point, and screw length for ATAS fixation across the atlantoaxial joint in Turkish patients by using CT. In a review of the literature, it can be seen that few studies exist on this topic. Lu et al. measured 15 cadaver spines where the Mi-SPA values were 5.6°±1.6° and 4.8°±1.8° in males and females respectively; Ma-SPA values were 25.3°±2.6° and 23.1°±3.8° on males and females respectively; HI values were 16.1±1.8 mm and 14.7±1.5 mm on males and females respectively; and finally HJ values were 25.4±2.8 mm and 24.7±1.1 mm on males and females respectively (17). With exception of the HJ 28.46±3.6 mm measurement, all of these measurements were not comparable with our study. The causes of the discordance may be due to variance between screw entry points, differences in measurements between patient race, and/or the differences in measurements due to the use of CT in our study. Recently, Ji et al. reported a study completed on 30 pairs of dried human C1 and C2 vertebrae where the Mi-SPA was 26.4°±3.1° and HJ was 32.6±2.9 mm. These findings were compatible with our measurements (12). On the other hand, the best screw entry point has not been previously evaluated comprehensively for ATAS fixation across the atlantoaxial joint. Surgeons may evaluate the radiological images that are needed for an anterior C1-C2 surgery before the operation (2). If the operation is an emergency surgery, using screws longer than 28.46±3.60 mm may be dangerous. In the present study, the aim of taking measurements before the surgery was to decrease the hazardous consequences; a screw angle not more than 41.18°±4.49° on the coronal plane could be safer in order to protect the vertebral artery. Further studies using these radiological measurements during surgery for ATAS fixation across the atlantoaxial joint will be valuable. All spine surgeons should be aware of the anatomical relationship between the first cervical and second vertebra before ATAS fixation across the atlantoaxial joint, possibly limiting appropriate screw positioning.
CONCLUSION

The possible screw angles for ATAS fixation across the atlantoaxial joint should be measured on coronal and sagittal CT multiplanar reconstruction images. These measurements may be useful for surgeons who need to perform the procedure of ATAS fixation across the atlantoaxial joint. In cases in which ATAS fixation across the atlantoaxial joint should be performed without first calculating the measurements, setting the screw angle not more than 41.18°±4.49° on the coronal plane does not damage the vertebral artery while using screws shorter than 28.46±3.60 mm does not purchase the atlantoaxial joint.

REFERENCES

1. Abou Madawi A, Solanki G, Casey AT, Crockard HA: Variation than 28.46±3.60 mm does not purchase the atlantoaxial joint.