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ABSTRACT 
The use of stem cells in the treatment of traumatic spinal cord injury (SCI) in
recent years has provided promising results. Different sources of cells for
transplantation have been used, including neural progenitor cells (NPCs), neural
stem cells (NSCs) or embryonic stem cells (ESCs). Experimental and clinical
studies are currently underway to define the potentials of stem cells in the
treatment of SCI. As implantation-based neural cellular restoratory therapy
develops, SCI that has not been typically treated by surgical procedures, will be
ultimately introduced within the realm of neurosurgery. It is thus imperative that
neurosurgeons have an understanding of and in-depth training in research
endeavors related to the field of stem cell biology. This paper aims to briefly
review the current status and potential of using stem cells to repair experimental
SCI.  
KEYWORDS: Embryonic stem cells, Neural stem cells, Neurosurgery, Spinal
cord injury, Treatment, Stem cell

ÖZ
Son yıllarda, travmatik omurilik yaralanmasının (OY) tedavisinde kök hücrelerin
kullanımının umut vaad eden sonuçları vardır. Nöral progenitor hücreler (NPH),
nöral kök hücreler (NKH) veya embriyonik kök hücreler (EKH) gibi
transplantasyon için kullanılabilecek değişik kaynak kök hücreler mevcuttur. OY
tedavisinde kök hücrelerin potansiyel olarak kullanımı için deneysel ve klinik
çalışmalar halen devam etmektedir. İmplantasyon yapılarak sinir hücrelerinin
tedavi olanağı geliştikçe, genellikle cerrahi girişim ile tedavi edilmeyen OY
nöroşirürji alanına girecektir. Bu nedenle, kök hücre biyolojisi alanında
nöroşirürjiyenlerin eğitimi gereklidir. Bu yazıda, kısaca kök hücre
araştırmalarındaki mevcut durum ve deneysel OY tedavisinde kök hücre
kullanımının yeri özetlenmiştir. 
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INTRODUCTION

Traumatic spinal cord injury (SCI) often results in
significant neurologic dysfunction and disability.
The annual incidence of SCI in developed countries
varies from 11.5 to 53.4 per million population (23,
46). Much research over the past 30 to 40 years has
focused on elucidating the mechanisms underlying
the complex pathophysiologic processes being
slowly unraveled following SCI. It is now generally
accepted that acute SCI is a two-step processes
involving primary and secondary events (3, 14, 51).
The primary process involves the initial mechanical
injury due to local deformation and energy
transformation, whereas the secondary mechanism
encompasses a cascade of biochemical and cellular
processes that are initiated by the primary process
and may cause ongoing cellular damage, cell death,
axonal loss and demyelination (3, 46, 51). These
pathophysiological features plus the dearth of
available treatment options for SCI have made the
injured spinal cord an attractive target for studying
cell-based therapies (5, 16, 33, 41). Importantly, it has
been increasingly appreciated that with effective
neuroprotection in place provided by donor cells
including neural stem cells (NSCs), other treatments
aiming to promote axonal regrowth and neural
plasticity, if started simultaneously or immediately
thereafter, may synergistically enhance functional
restoration (5). In pursuing this possibility,
experimental use of neurotrophins or neurotrophic
factors to increase neuroprotection and axonal
growth, neutralizing antibodies to Nogo and other
oligodendrocyte-related inhibitory molecules and
drugs to increase intracellular levels of cAMP have
been investigated (2, 4, 5, 35, 45, 56). Furthermore,
several studies have suggested that NSCs, when
transplanted into the injured brain or spinal cord of
rodents, migrate preferentially to and become
integrated within the damaged areas. A
subpopulation of the transplanted NSC is re-
directed to differentiate into cell types that might
replace the diseased or degenerated host cells (36, 37,
43, 60). Thus, the initial primary rationale was that
cell-based strategies for reconstituting the injured
spinal cord must accommodate the need to replace
multiple cell types (13, 16, 49). 

Definition of Stem Cells

Stem cells are defined as immature, uncommitted
cells that are able to self-replicate in tissue culture,
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and differentiate into most lineages of cells.
Embryonic stem cells (ESCs) are derived from the
inner cell mass of an embryo in the blastocyst stage
and are totipotent, i.e., with the ability to form all cell
types and tissues from all embryonic germ layers,
including neural tissues (42, 62). Multipotent NSCs,
which have the ability to differentiate into all neural
cell types (i.e., neurons, astrocytes and
oligodendrocytes), are derived from the neural tube,
subventricular zone and/or germinal matrix of a
developing fetus brain and propagated in specific
growth factor enhanced media (15, 48). These cells
have the ability to form neurons, astrocytes, and
oligodendrocytes given the appropriate
developmental cues or culture conditions. Indeed,
when transplanted into the developing nervous
system, NSCs disseminate throughout the central
nervous system (CNS) and integrate within the
developing neural networks. Both ES cells and NSCs
have been investigated for their potential role in the
treatment of SCI. Stem cells, theoretically, are able to
provide an unlimited source of donor cells for
transplantation through in vitro expansion in an
undifferentiated state. In experimental models,
neural stem cells have been shown to have the ability
to engraft and integrate into diseased CNS,
repopulate specific types of degenerating cells, and
express therapeutic foreign genes (15). 

Potential for Using NSCs to Repair the Injured
Spinal Cord

SCI is associated with the loss of both neurons
and glia (13, 55). Improved functional outcomes after
SCI may be elicited by neuroprotective approaches
that limit secondary tissue loss and thus the loss of
function. Alternatively, functional recovery could be
elicited by axon growth and neural plasticity-
promoting approaches that result in restoration of
damaged and/or formation of new neural circuits
that could become involved in functional recovery
(22, 55). There is little doubt that stem cells and
neural progenitor cells could become invaluable
components of repair strategies for the spinal cord.
NSCs, by definition, can become neural cells that
may support anatomical/functional recovery.
Alternatively, they may secrete growth factors that
could support neuroprotection and/or neurite
reorganization. The potential of stem cells or
progenitor cells to mediate spinal cord repair has
been studied extensively (10, 17, 55, 59). The



potential problems related to stem cell application to
neural repair have also been discussed (9, 57, 59, 63).
For instance, over the last decade, stem cells have
often been studied without implementing explicit
bench criteria that would define the used cells as
such. These and other matters regarding the use of
stem/progenitor cells for SCI treatment also need to
be resolved before effective therapies can be
developed (63).

Clinical Potential of NSCs

Various treatment strategies have shown benefit
in experimental animal models, there is still no
effective therapy for clinical SCI. This difficult
situation, in our opinion, is attributable to the
following realities. First, there has been no
conclusive evidence favoring one process as the
predominant pathophysiological mechanism which
can account for all the spinal dysfunction seen
following SCI. Most of the pathophysiological
processes (e.g., secondary molecular events:
glutamate toxicity, sodium and calcium influx, free
radical insult, cytochrome c release; secondary
pathophysiological events: ischemia, anoxia,
apoptosis, etc.) apparently exist either
simultaneously or sequentially in an interlocked or
independent manner throughout the evolution of
the injury and represent different facets of this
complicated disease entity (3, 51, 52). Most
interventions reported to date target solely one facet
of the injury process which, in isolation, is doomed
to have limited benefit. To further complicate the
situation, a given approach that may be useful when
used alone, may become ineffective or even
detrimental when used in combination with other
interventions, perhaps working at cross purposes.
Hence, it is critical to understand the intricate
interactions between these options and identify the
underlying mechanisms of their actions so that they
may be orchestrated in a safe, synergetic, and
clinically feasible fashion (5, 41). Given these
challenges, the use of a “therapeutic anchoring
vehicle” such as the NSC has been deemed to be an
appealing strategy to address multiple pathological
processes simultaneously while effecting functional
recovery (55, 56, 57). In an ideal situation, the
“therapeutic anchoring agent” should be (a)
multipotent in terms of assuming the roles of
different neural cell lineages and performing
different functions, including functions at play early
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in development such as the regulated release of
neurotrophic factors and other homeostasis-
maintaining agents, and (b) capable of modifying the
restrictive environment of the post-injury CNS,
while not being vulnerable to most of the secondary
injury molecules. NSCs, given their innate biology
(and when presenting with appropriate doses and
functional dynamics), appear to be favorable
candidates for the role of therapeutic anchor vehicle
in treatment of traumatic CNS lesions. This notion
has been supported by outcomes from laboratory
studies. For example, animal studies have, in most
cases, consistently shown that neurologic recovery is
enhanced by stem cell implantation after injury, and
the most widely employed method of NSC delivery
utilizes cell transplantation technology. To better
direct neural repair following SCI, we previously
proposed an implant that mimics the general
structure of the healthy spinal cord (54). The
construct consisted of an inner section, engineered to
emulate gray matter, with an isotropic pore structure
of 250-500 μm in diameter to facilitate the seeding of
the NSC’s, and an outer section modeled to emulate
white matter with long, axially oriented pores for
axonal guidance and radial porosity to allow fluid
transport while inhibiting the ingrowth of scar
tissue. Implantation of the scaffold-neural stem cells
(i.e., a genetically immortalized mouse NSC line)
unit into an adult rat hemisection model of SCI
promoted long-term improvement in function
relative to a control group. At 70 days post-injury,
animals implanted with scaffold-plus-cells exhibited
coordinated, weight-bearing hindlimb stepping.
Histological and immunocytochemical analysis
suggested that this recovery was not caused by
neural cell replacement but, instead, was attributable
predominantly to a reduction in tissue loss from
secondary injury processes as well as to diminished
glial scarring. This work was the first to explicitly
advocate the “by-stander” neuroprotective effects of
NSCs. Tract tracing demonstrated corticospinal tract
fibers passing through the injury epicenter to the
caudal side of the lesion, a phenomenon not present
in untreated groups. Together with evidence of
enhanced local GAP-43 expression, an axonal
growth marker, not seen in controls, these findings
suggested a possible neuroplastic/ regenerative
component in the therapeutic effects of NSCs which
might have further facilitated the functional
recovery. Besides suggesting a new paradigm for



treating SCI, these results may serve more broadly as
a prototype for the anchoring by NSCs of
multidisciplinary strategies of regenerative
medicine (i.e., anti-secondary injury including anti-
inflammation, mitigation of astrogliosis, tissue
engineering, trophic factor delivery, gene therapy,
and material sciences) in the setting of complex
neurological disorders. More recently, Song et al
showed that in the rats that received hNSC
transplantion during subacute phase following
trauma, showed better survival and differentiation
of donor cells (50). They therefore suggested that
NSC transplantations should be performed during
the subacute stage after injury to achieve maximum
therapeutic potential, which additionally indicates
that there may be a practical therapeutic window for
applying NSC to treat SCI clinically (50). 

Comprehensive Impact of NSC on the Injured
Spinal Cord

To date, as a therapeutic tool in the treatment of
neurologic disorders, the most promising results
have been obtained using hNSC isolated directly
from the human fetal neuroectoderm. The
propagation ability of such tissue-derived hNSC is
sometimes limited, making it difficult to establish a
large-scale culture. Following engraftment, these
hNSC often show low efficiency in generating the
desired neuronal cells necessary for reconstruction
of the damaged host milieu and, as a result, have
failed to give satisfactory results in clinical trials so
far. Alternatively, human embryonic stem cells
(hESC) or induced ploripotent stem (iPS) cells offer a
pluripotent reservoir for in vitro derivation of a rich
spectrum of well-characterized neural-lineage
committed stem/progenitor/precursor cells that
can, theoretically, be picked at precisely their safest
and most efficacious state of plasticity to meet a
given clinical challenge (38). Considering the ability
of stem cells to become any cell types they are
related developmentally, their potential use for cell
replacement is a common sense-derived strategy
(59), for this purpose, ESCs or iPS cells are indeed
likely sources for cell replacement treatment of SCI.
On the other hand, one of the main problems of ES
or iPS cell-based cell therapy is tumor formation, to
date there is no an ideal method to suppress tumor
development from ESCs/iPSCs (29). Conversely,
with the appropriate combination of (growth)
factors (induction cocktail), ESCs can be used to
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obtain neurons and glial cells (1, 27, 59).
Interestingly, Matsuda et al. showed that bone
marrow stromal cells (BMSCs) could help induce
undifferentiated ESCs to differentiate into a neuronal
lineage by neurotrophic factor production, resulting
in suppression of tumor formation. They hence
recommended that cotransplantation of BMSCs with
ES cell-derived graft cells may be useful for
preventing the development of ES cell-derived
tumors (29). With respect to human ESCs’ potential
to be directed toward generating multipotent neural
precursors, motor neurons, and oligodendrocyte
progenitor cells (8, 21, 25, 26, 59), the latter were
found to be capable to differentiate into mature
oligodendrocytes in vitro and in vivo (34, 59).
Moreover, these cells are able to myelinate axons
after transplantation into the spinal cord of myelin-
deficient shiverer mice and adult rats (21, 59).

NSC implants into the injured spinal cord have
been used under the initial premise that regionally
appropriate phenotypes might be generated from
undifferentiated cells in response to local signals
competent to induce cell type-specification (16).
However, more intriguingly – ultimately, of greater
importance and utility – is the observation that
undifferentiated NSC or NSC that have pursued a
glial lineage seem to recondition the host CNS
microenvironment and promote functional recovery
by protecting pre-existent but threatened host
neurons and circuitry (54). The impact of this action
is probably greater than neuronal replacement. The
precise mechanism by which NSC exert this
homeostatic pressure is unclear, though it is likely
attributable to a large degree by intrinsic ability of
NSC to secrete neurotrophic factors, and/or
immunomodulators, and form gap junctions with
host cells (18, 28, 39, 40, 54, 56). Thus, preserving the
multipotency of these cells – as opposed to
attempting to direct them invariantly down the
differentiation pathway of a single cell type – might
offer the greatest chance for cell-based therapies of
the different inter-locked stages of SCI but in a
parsimonious fashion. Harnessing the potentially
broad therapeutic capacity of the NSC for use in an
intelligent and rationale manner requires learning
the principles that can govern interaction between
the pathologic target and host environmental
components, the NSC, and other therapeutic
reagents. 



The innate biology of NSC (i.e., their default
production and secretion of various neurotrophic
factors and other molecules in a differentiation
stage-dependent fashion) enables them to interact
with the surrounding environment, including
releasing trophic factors in an appropriate,
regulated, stimulusappropriate manner. These
factors, in our view, are components of the stem
cell’s inherent developmental program which “calls
upon it” to exert homeostatic forces upon a
dynamically growing nervous system which,
otherwise, could become dysequilibrated. The result
of this inherent “program” – a dividend from
developmental biology – is to promote, enable,
induce, or catalyze the host to attempt to reconstitute
its own tissue, to minimize barriers to this process,
and to protect endangered cells from cell death or
other toxic influences (53). 

Regarding endogenous NSC and their possible
roles in SCI repair, these cells have been found to
reside in a few well-characterized secondary
germinal zones of the adult central nervous system,
most notably the subgranular zone (SGZ) of the
dentate gyrus of the hippocampus and the
subventricular zone (SVZ) along the anterior part of
the lateral ventricle in the forebrain. Endogenous
NSC may also reside in the ependymal region of the
spinal cord. In response to injuries like stroke, adult
hippocampal NSC may proliferate and differentiate
into new, functioning neurons (44). However, NSC
in the adult spinal ependymal region do not seem to
differentiate into neurons when they reside in their
normal spinal cord niche. Nevertheless, when these
same NSC are transplanted into the SGZ, they do
yield neurons (12, 19, 47). Hence, limitations to
neurogenesis must emanate in large part from the
microenvironment of the adult spinal cord rather
than from the cells themselves. Therefore, it seems
feasible that either altering the milieu or changing
the cells to respond differently to that milieu may
permit these endogenous spinal NSC to play a more
prominent role in neuronal reconstitution in the
adult cord (11, 55). To overcome the normal
impediments to adult neurogenesis will require a
better understanding of the biological roles of spinal
NSC, especially their proliferation in response to
injury, inflammation, and rehabilitation-mediated
neuroactivity – all significantly unexplored (55). 

Additionally, murine ESCs were observed to
survive and promote recovery in the contused spinal
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cord (30). Although this recovery was at first
attributed to the few neurons that appeared to
emerge, a more detailed study showed that
functional impact may, in fact, have been more
plausibly due to oligodendrocyte that myelinated
some traumatized host axons (27). Since the injured
cord offers a microenvironment that appears not
favorable to the differentiation of multipotent NSC
into neurons (7), it has been proposed that
transplanting neuronal and glial restricted
precursors (NRP/GRP: i.e., pre-committing the cells
to a particular lineage ex vivo rather than letting the
in vivo environment direct their differentiation) may
be a more practical approach. 

The transplantation of NRP/ GRP into the
postcontusion spinal cord did improve motor and
sensory function. Histological analysis showed that a
subset of the NRP/GRP survived, filled the lesion
site, differentiated into neurons and glia, and
migrated selectively (6, 31). Interestingly, the volume
of spinal cord spared was increased in NRP/ GRP
recipients, suggesting that their action may
nevertheless have been attributable in a large part to
local neuroprotection. The actual role that donor-
derived neurons played in recreating neurocircuitry
is presently not determined. Kumagai and
colleagues showed that transplantation of the
gliogenic secondary neurospheres (SNS), but not the
neurogenic primary neurospheres (PNS), promoted
axonal growth, remyelination, and angiogenesis, and
resulted in significant locomotor functional recovery
after subacute SCI rodent model. Their finding
suggests that gliogenic neural stem/progenitor cells
(NS/PCs) may be also effective for promoting the
recovery from SCI, and may provide an additional
tool to investigate the mechanisms through which
cellular transplantation leads to functional
improvement after SCI (13, 24). Thus, further
investigation is necessary to precisely define the cell
biology, safety, and potential therapeutic benefits of
transplanted stem cells that are predifferentiated into
neural cells prior to their introduction into formal
clinical trials.

Future Directions of Functional Restoration for
SCI

As data elucidating the complexity of spinal cord
injury pathophysiology emerge, it is increasingly
being recognized that successful repair will probably
require a multifaceted approach that combines



tactics from various biomedical disciplines,
including cell transplantation, gene therapy,
material sciences and pharmacology. Recently, new
evidence highlighting the benefit of physical activity
and rehabilitation interventions during the post-
injury phase has provided novel possibilities in
realizing additional efficacy of NSC-mediated repair
after spinal cord injury. However, we believe that the
basic mechanisms by which these various
interventions act must be thoroughly explored and
important synergistic and antagonistic interactions
identified, before a comprehensive therapeutic
strategy that optimally utilizes the benefits of each of
these disciplines can be designed. In examining the
mechanisms by which physical activity-based
functional recovery after spinal cord injury is
affected, endogenous neural stem cells, in our
opinion, engender a potentially key role that
theoretically can be mimicked or further augmented
by transplantation of human NSC or other types of
progenitor cells (32). In terms of applying chemical
engineering strategies to additionally enhance the
therapeutic potential of stem cells, the use of
scaffolds and cellular bridges are well-suited for
lesions in which there is large parenchymal loss or
where a syrinx might otherwise form because of
extensive cell death following contusion (54, 61).
Recently, others and we have shown that the ability
of fibrin scaffolds or drug-embedding PLGA to exert
the controlled release of growth factors or free
radical scavengers to enhance the survival/
differentiation of neural progenitor cells and impede
secondary injury, respectively, following
transplantation into a SCI model (20). 

In summary, the experimental data, overall,
advocates the incorporation of stem cell
implantation or activation of endogenous NSCs as a
component of the multidimensional treatment of
spinal cord injury and underscores the critical need
to employ research-based mechanistic approaches
for developing future advances in the stem cell
therapies for neurological injury and disorders.

ABBREVIATIONS

Bone marrow stromal cells (BMSCs); central
nervous system (CNS); cyclic Adenosine
Monophosphate (cAMP); embryonic stem cells
(ESCs); human embryonic stem cells (hESC); human
neural stem cell (hNSC); neuronal and glial
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restricted precursors (NRP/ GRP); neural progenitor
cells (NPCs); neural stem/ progenitor cells
(NS/PCs); neural stem cells (NSCs); primary
neurospheres (PNS); secondary neurospheres (SNS);
spinal cord injury (SCI); subgranular zone (SGZ);
subventricular zone (SVZ)
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