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Hydrogen does not Exert Neuroprotective Effects or Improve 
Functional Outcomes in Rats After Intracerebral Hemorrhage

ABSTRACT

(ROS) damage the blood-brain barrier and increase brain 
edema (8,22,30). Hydroxyl radicals and peroxynitrites are 
very strong ROS that react indiscriminately with nucleic acids, 
lipids, and proteins, resulting in DNA fragmentation, lipid 
peroxidation, and protein inactivation (4,5,10,20,21,24,26,27). 
Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a potent 
scavenger of hydroxyl radicals and is used for the treatment 
of ischemic stroke in Japan. Edaravone attenuates the 
edema and ischemic damage after ICH by reducing oxidative 
damage in a rat model of ICH (23), and so has increasingly 
been investigated for use in ICH. However, a review of 10 
randomized controlled studies failed to find any beneficial 
effect of edaravone for the treatment of ICH (31). Therefore, 
more potent free radical scavengers may be needed.

█    Introduction

Hypertensive intracerebral hemorrhage (ICH) accounts 
for 10–20% of strokes (2). ICH can be devastating with 
high mortality rates ranging from 30% to 50% at 30 

days, and many survivors remain severely disabled (1,3,7,28). 
The International Surgical Trial in Intracerebral Haemorrhage 
(STICH) study, a landmark trial of over 1,000 ICH patients, 
showed that emergent surgical hematoma evacuation 
via craniotomy within 72 hours of onset failed to improve 
outcome compared to a policy of initial medical management 
(19). In addition, no specific medical therapy is available, so 
the optimal management of ICH has not been definitively 
established.

Increasing evidence suggests that reactive oxygen species 
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Recently, strong clinical and experimental evidence has shown 
that hydrogen, administered by gas inhalation or ingestion of an 
aqueous hydrogen-containing solution, has potent protective 
cellular effects in various diseases (4,5,10,20,21,24,26,27), 
but without major adverse effects (5). Previous studies have 
shown that hydrogen has antioxidant, anti-apoptotic, anti-
inflammatory, and cytoprotective properties that are beneficial 
to the cell (5). However, only a few experimental studies have 
investigated the effect of hydrogen on ICH (17,18).

The present study investigated whether hydrogen can exert 
neuroprotective effects and improve functional outcome in the 
blood injection rat ICH model.

█   Material and Methods
Animal Preparation and Intracerebral Infusion

This study was carried out in strict accordance with the 
recommendations in the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health. All 
experimental procedures were approved by the Animal 
Care and Use Committee of the National Defense Medical 
College. All efforts were made to minimize suffering. Sixty-
three Sprague-Dawley rats (male, 330–400 g, 9–10 weeks 
of age) were used. The rats were housed in individual cages 
under controlled environmental conditions (12/12 hour light/
dark cycle, 20–22°C) with food and water freely available, for 
1 week before experimental procedure. General anesthesia 
was induced with 3% isoflurane. The rats were intubated, 
and maintained on a mechanical ventilator after infusion of 
pancuronium bromide (0.1 mg/kg; tidal volume: 2.5–3.0 ml/
kg; respiratory rate: 60/min). The tail artery was cannulated 
with a polyethylene catheter. Blood pressure was monitored 
throughout the procedure, and arterial blood samples were 
intermittently analyzed (PaCO2 was controlled at 30–40 
mmHg). Isoflurane was titrated between 0.5% and 3% to 
maintain a mean arterial pressure of 80 to 130 mmHg. Rectal 
temperature was measured with a rectal probe and maintained 
strictly at 37.0°C with a heating pad or heating lamp. The rats 
were positioned using a stereotaxic frame, and a cranial burr 
hole (1 mm) was drilled in the skull (1 mm anterior and 4 mm 
lateral to bregma). Next, a 27-gauge needle was inserted 
stereotactically into the right caudate nucleus (5 mm ventral 
from the skull surface). Autologous whole blood (50 μl with no 
anticoagulants) was injected at 10 μl/min using a microinfusion 
pump. The needle was maintained in place for 10 minutes 
after injection to prevent back-leakage. After needle removal, 
the burr hole was sealed with bone wax. Sham operation was 
performed with needle insertion only.

Production of Hydrogen-Rich Saline

Hydrogen-rich saline was produced with a non-destructive 
hydrogen adding apparatus (Miz Co., Fujisawa, Kanagawa, 
Japan; Patent No. 4486157, Patent Gazette of Japan 2010) 
(21,27,29). Bags of physiological saline solution (500 ml; 
Terumo Co., Tokyo, Japan) were immersed, without opening or 
altering the bag, in a water tank in which water was electrolyzed 
periodically to produce water with hydrogen concentrations 
of up to 1.6 ppm. The concentration of hydrogen in the bag 

reaches saturation point, at more than 1.0 ppm, because of 
diffusion through the wall of the bag. Further information can 
be obtained using the following link: http://www.e-miz.co.jp/
english/technology.html#non_destructive.

Hydrogen Treatment

Rats were randomly divided into four groups: sham (n = 12), 
ICH/vehicle (n = 17), ICH/hydrogen gas (n = 17), and ICH/
hydrogen-rich saline groups (n = 17). Thirteen minutes after 
operation, hydrogen-rich saline group rats were administered 
hydrogen-rich saline (5 ml/kg) via the femoral vein, whereas 
other group rats were administered normal saline (5 ml/kg) (27). 
Soon after administration of hydrogen-rich saline or normal 
saline, rats were placed individually in a sealed Plexiglas box 
with inflow and outflow outlets. Hydrogen gas group rats 
were exposed to nitrogen-based standard mixed gas with 
1.3% hydrogen and 30% oxygen (Saisan Co., Ltd., Saitama, 
Saitama, Japan) for 3 hours daily for 3 days, whereas other 
group rats were exposed to nitrogen-based high pressure 
mixed gas with 30% oxygen (without hydrogen) (Saisan Co., 
Ltd.) (20). The hydrogen concentration of 1.3% was applied 
as a safe level in high pressure mixed gas containing 30% 
oxygen.

Morphometric Measurement of Hemorrhage Volume

Rats were decapitated, and the brains were rapidly removed 
and sectioned coronally at 2-mm intervals at 72 hours after ICH 
(n = 5 per group except for the sham group). The hemorrhage 
area for each section was measured by an observer unaware 
of the experimental groups using the NIH ImageJ software 
program (http://rsb.info.nih.gov/ij/). The total hematoma 
volume was calculated by summing the clot area in each 
section and multiplying by the distance between sections (13).

Tissue Preparation

For the immunohistochemical studies, animals were perfused 
transcardially with normal saline, followed by 4% buffered 
paraformaldehyde under intraperitoneal anesthesia at 72 
hours after ICH (n = 5 per group). The brain was removed 
and embedded in paraffin after fixation in 4% buffered 
paraformaldehyde, followed by 0.1 mmol/l phosphate-
buffered saline (pH 7.4) for 24 hours at 4°C. Serial coronal 
sections (5 μm) were prepared, and a single coronal section 
through the center of the hemorrhagic lesion was used for 
8-hydroxy-2’-deoxyguanosine (8-OHdG) staining.

Immunohistochemistry

Serial coronal sections were stained overnight at 4°C with a 
mouse monoclonal antibody against 8-OHdG (1:1000; Japan 
Institute for the Control of Aging, Fukuroi, Shizuoka, Japan). 
Immunoreactivity was detected using a diaminobenzidine 
method. Images were observed and captured at magnification 
400× with a microscope (Axio Imager.A1, Carl Zeiss) equipped 
with a digital camera system (Axio Cam MRc 5, Carl Zeiss). 
For quantitative analysis, the number of 8-OHdG-positive 
cells was counted in the perihematoma region by an observer 
unaware of the experimental groups as described previously 
(20). Eight sampling regions were randomly placed along the 
perihematoma region, and the average count was calculated 
for analysis.
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Behavioral Tests

Neurological scores were assessed by an observer unaware 
of the experimental groups before, and at 24 and 72 hours 
after ICH (n = 7 per group). Corner turn and forelimb placing 
tests were used in this study (9). The vibrissae-elicited forelimb 
placing test was performed as follows. Rats were held by their 
bodies to allow their forelimbs to hang freely. Independent 
testing of each forelimb was induced by brushing the respective 
vibrissae on the corner of a tabletop once per trial for trials. A 
score of 1 was given each time the rat placed its forelimb onto 
the edge of the table in response to the vibrissae stimulation. 
Percentage successful placing responses were determined 
for the impaired and nonimpaired forelimbs. For the corner 
turn test, rats were allowed to proceed into a corner, the angle 
of which was 30 degrees. To exit the corner, the rat could turn 
either to the left or right, and this direction was recorded. This 
test was repeated 15 times, and the percentage of right turns 
was calculated.

Brain Water Content

The brain water content was measured using the wet/dry 
method. Briefly, rats were euthanized under deep anesthesia 
and decapitated 72 hours after operation (n=7 per group). 
Brains were removed immediately, and a 3-mm thick coronal 
brain slice was then cut at 4 mm from the frontal pole. The brain 
slice was divided into five parts: ipsilateral and contralateral 
basal ganglia, ipsilateral and contralateral cortices, and 
cerebellum. Tissue samples were weighed, after which the 
tissues were placed in an oven at 110°C for 48 hours and 
then reweighed. The brain water content was calculated using 
the following formula: (wet weight - dry weight)/wet weight 
×100%.

Statistical Analyses

All assays and measurements in this study were performed 
by investigators unaware of the experimental groups. The 
data are presented as means ± standard deviation (SD). 
Comparisons between multiple groups were performed with 
analysis of variance, followed by Turkey’s test. A value of P < 
0.05 was considered to be significant. The Prism 6.0 software 
program (GraphPad Software, Inc., San Diego, CA) was used 
for all statistical tests.

█   Results
Hematoma Volume

The hematoma volume was 35.53 ± 4.93 mm3 in the ICH/
vehicle group, 34.31 ± 3.73 mm3 in the ICH/hydrogen gas 
group, and 35.32 ± 4.40 mm3 in the ICH/hydrogen-rich saline 
group. There was no significant difference between the three 
groups (P > 0.05).

Effect of Hydrogen on 8-OHdG Immunoreactivity

Oxidative DNA damage was assessed in the perihematoma 
regions using an 8-OHdG antibody at 72 hours after treatment 
(Figure 1A,B). Faint 8-OHdG immunoreactivity was observed 
in the sham group (0.08 /0.091 ± 0.10 mm2). However, strong 
8-OHdG immunoreactivity was observed in the ICH/vehicle 

group (16.08 /0.091 ± 0.73 mm2), with significantly lower 
numbers of 8-OHdG-positive cells in the ICH/hydrogen gas 
group (6.33 /0.091 ± 0.50 mm2) and the ICH/hydrogen-rich 
saline group (7.20 /0.091 ± 0.61 mm2) (P < 0.05).

Effect of Hydrogen on Neurological Behaviors

Neurological behaviors were assessed by the forelimb placing 
and corner turn tests before, and at 24 and 72 hours after ICH 
(Figure 2A,B). Compared with the sham group, statistically 
significant neurological deficits were detected in the ICH/
vehicle, ICH/hydrogen gas, and ICH/hydrogen-rich saline 
groups (P < 0.05). However, neither test showed significant 
differences between the ICH/vehicle, ICH/hydrogen gas, and 
ICH/hydrogen-rich saline groups (P > 0.05).

Effect of Hydrogen on Brain Edema

Brain edema was assessed by measuring brain water content 
at 72 hours after treatment (Figure 3). Compared with the sham 
group, the ICH/vehicle group showed a significant increase in 
brain water content in the ipsilateral cortex (81.40 ± 0.39 % 
vs. 78.17 ± 0.30 %, P < 0.05) and ipsilateral basal ganglia 
(82.96 ± 0.50 % vs. 77.22 ± 0.53 %, P < 0.05). However, 
the ICH/vehicle, ICH/hydrogen gas, and ICH/hydrogen-rich 
saline groups showed no significant differences in brain water 
content in the ipsilateral cortex and basal ganglia (cortex: 
81.40 ± 0.39 % vs. 81.65 ± 0.78 % vs. 81.78 ± 0.80 %, basal 
ganglia: 82.96 ± 0.50 % vs. 82.61 ± 0.70 % vs. 82.47 ± 0.51 
%, P > 0.05).

█   Discussion
The present study showed that hydrogen reduced the 
expression of 8-OHdG in the brain but did not attenuate 
brain water content or improve functional outcome in the 
blood injection rat model, regardless of administration 
route. In contrast, previous studies have demonstrated that 
hydrogen gas inhalation treatment attenuated blood-brain 
barrier disruption, and improved neurobehavioral function via 
prevention of mast cell activation in collagenase-induced ICH 
mouse (CD-1) model (17,18).

These studies show important discrepancies for several 
possible reasons. Firstly, these studies used different 
experimental models, the blood injection rat model or the 
collagenase injection mouse model. The blood injection and 
collagenase injection models are most often used but differ 
in many aspects (12,14-16). Hematoma rapidly accumulates 
in the brain parenchyma in the clinical setting. In addition, 
hematoma expansion occurs in 14-40% of ICH patients 
(6,11,25). Therefore, rapid ICH accumulation and hematoma 
expansion should be simulated, but do not appear together 
in the two animal models: the blood injection model cannot 
reproduce the hematoma expansion, and the collagen injection 
model cannot simulate the rapid ICH accumulation. Further 
studies are required to investigate the effect of hydrogen 
in more realistic ICH models. Secondly, these studies used 
different methods of hydrogen administration. A concentration 
of less than 4% by volume hydrogen gas in air is reported to be 
safe (5). The present study used a concentration of hydrogen 
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Figure 1: Effect of hydrogen on oxidative 
DNA damage in the brain. A) Representative 
photomicrographs at 72 hours after treatment 
showing immunostaining for 8-hydroxy-2’-
deoxyguanosine (8-OHdG). 
B) Quantification of 8-OHdG-positive cells 
in perihematoma regions. Faint 8-OHdG 
immunoreactivity was observed in the 
sham group. However, strong 8-OHdG 
immunoreactivity was observed in the ICH/
vehicle group, with significantly lower numbers 
of 8-OHdG-positive cells in the ICH/hydrogen 
gas and the ICH/hydrogen-rich saline groups. 
Values are expressed as mean ± SD. n = 5 in 
each group. Scale bars = 50 μm. *p < 0.05 vs. 
sham group, #p < 0.05 vs. ICH/vehicle group.

Figure 2: Effect of hydrogen on neurological behaviors. Corner turn test (A) and forelimb placing test (B) were assessed before, and 
at 24 and 72 hours after treatment. Compared with the sham group, statistically significant neurological deficits were detected in the 
ICH/vehicle, ICH/hydrogen gas, and ICH/hydrogen-rich saline groups at 24 and 72 hours after treatment. However, neither test showed 
significant differences between the ICH/vehicle, ICH/hydrogen gas, and ICH/hydrogen-rich saline groups. Values are expressed as mean 
± SD. n = 7 in each group. *p < 0.05 vs. sham group.
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cisternal magnesium infusion in patients with subarachnoid 
hemorrhage (29). In the present study, hydrogen-rich saline 
injection as well as hydrogen gas inhalation reduced oxidative 
DNA damage in the brain, but unexpectedly had no beneficial 
effects on the brain edema and outcome, indicating that the 
involvement of ROS in ICH may be more complicated than 
previously believed. Therefore, we consider that hydrogen 
administration requires more experimental justification before 
introduction as clinical therapy. In addition to the limitations 
described above, there are several other possible limitations of 
our study. We failed to assess the chronic effects of hydrogen 
on ICH. In addition, the present study focused on the effects 
of only medical treatment using hydrogen (without surgery) on 
ICH, and therefore further studies are required to investigate 
whether hydrogen administration is effective after surgery for 
ICH.

█   Conclusion
Hydrogen treatment without surgery has no neuroprotective 
effects in the blood injection rat ICH model.
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